YOKOGAWA

Compact Size \& Superior Cost Performance Transducers

0.5 Class Transducer for Power Application

[^0]

0.5 Class Transducer Lineup

- Available for DIN rail or panel mounting.
- Please contact with Yokogawa if not found the required transducer in this lineup.
- Multi-transducer (2479) is described in separate catalog.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Appli \& ation \& Mode \& \& Input rating \& Output rating / External load \& Tolerance \& Output ripple \& Responce \& Frequency \& Input power \& Auxiliary power \& Input range \& Weight \\
\hline \& solator
oupler
ion \& 2371A \& 00 \& \[
\begin{array}{|c|}
\hline \mathrm{DC} 50 \mathrm{mV} \\
1 \mathrm{~V} \\
5 \mathrm{~V} \\
1-5 \mathrm{~V} \\
1 \mathrm{~mA} \\
4-20 \mathrm{~mA} \\
\hline
\end{array}
\] \& \(5 \mathrm{~V} / 1 \mathrm{k} \Omega\) or more \(10 \mathrm{~V} / 2 \mathrm{k} \Omega\) or more \(1-5 \mathrm{~V} / 1 \mathrm{k} \Omega\) or more \(1 \mathrm{~mA} / 10 \mathrm{k} \Omega\) or less \(5 \mathrm{~mA} / 2 \mathrm{k} \Omega\) or less \(4-20 \mathrm{~mA} / 500 \Omega\) or less \& \[
\begin{aligned}
\& \pm 0.5 \% \\
\& \text { of span }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { 1\%p-p } \\
\& \text { MAX }
\end{aligned}
\] \& 0.5 s \& DC \& \[
\begin{aligned}
\& \mathrm{V}: 1 \mathrm{~mA} \\
\& \mathrm{~A}: 500 \mathrm{mV} \\
\& \quad \text { drop }
\end{aligned}
\] \& required \& - \& 380g \\
\hline \begin{tabular}{l}
AC voltag \\
aver
rect
\end{tabular} \& current \& 2372A \& 00 \& \[
\begin{array}{r}
\mathrm{AC} 1 \mathrm{~A} \\
5 \mathrm{~A} \\
110 \mathrm{~V}
\end{array}
\] \& \(5 \mathrm{~V} / 2 \mathrm{M} \Omega\) or more
\(10 \mathrm{~V} / 2 \mathrm{k} \Omega\) or more
\(1-5 \mathrm{~V} / 1 \mathrm{k} \Omega\) or more
\(1 \mathrm{~mA} /^{4} 4\)
\(5 \mathrm{~mA} / 2 \mathrm{k} \Omega\) or less
\(4-20 \mathrm{~mA} / 500 \Omega\) or less \& \[
\begin{aligned}
\& \pm 0.5 \% \\
\& \text { of span }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { 1\%p-p } \\
\& \text { MAX }
\end{aligned}
\] \& 1 s \& \[
\begin{gathered}
45- \\
65 \mathrm{~Hz}
\end{gathered}
\] \& 1 VA \& \[
\left\lvert\, \begin{gathered}
* 4 \\
\text { not req'd } \\
\text { for } 5 \mathrm{~V}, \\
1 \mathrm{~mA},
\end{gathered}\right.
\] \& - \& 350g \\
\hline \& current \& 2373A \& 00 \& 120 V 150 V 220 V 240 V 300 V 480 V 600 V \& \begin{tabular}{|r}
\(10 \mathrm{mV} / 10 \mathrm{k} \Omega\) or more \\
\(5 \mathrm{~V} / 2 \mathrm{M} \Omega\) or more \\
\(10 \mathrm{~V} / 2 \mathrm{k} \Omega\) or more \\
\(1-5 \mathrm{~V} / 1 \mathrm{k} \Omega\) or more \\
\(1 \mathrm{~mA} /{ }^{4} 4\) \\
\(5 \mathrm{~mA} / 2 \mathrm{k} \Omega\) or less \\
\(4-20 \mathrm{~mA} / 500 \Omega\) or less
\end{tabular} \& \[
\begin{aligned}
\& \pm 0.5 \% \\
\& \text { of span }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { 1\%p-p } \\
\& \text { MAX }
\end{aligned}
\] \& 1 s \& \[
\begin{gathered}
45- \\
65 \mathrm{~Hz}
\end{gathered}
\] \& 1 VA \& but req'd for others \& - \& 350g \\
\hline AC volt, (true RMS \& urrent ectified) \& 2374A \& 00 \& \& same as 2371 A \& \begin{tabular}{l}
\(\pm 0.5 \%\) \\
of span
\end{tabular} \& \[
\begin{aligned}
\& \text { 1\%p-p } \\
\& \text { MAX }
\end{aligned}
\] \& 0.5 s \& \[
\left\lvert\, \begin{gathered}
45- \\
10 \mathrm{kHz}
\end{gathered}\right.
\] \& 0.5 VA \& required \& - \& 320g \\
\hline Power \& \[
\begin{gathered}
1 ø 2 w \\
\hline 1 ø 3 w \\
\hline 3 ø 3 w \\
\hline 3 ø 4 w
\end{gathered}
\] \& 2375A \& \begin{tabular}{|l|}
10 \\
\hline 20 \\
\hline 30 \\
\hline 40 \\
\hline
\end{tabular} \& \& \begin{tabular}{l}
(\(\pm) 10 \mathrm{mV} / 10 \mathrm{k} \Omega\) or more (\(\pm\)) \(5 \mathrm{~V} / 1 \mathrm{k} \Omega\) or more (\(\pm) 10 \mathrm{~V} / 2 \mathrm{k} \Omega\) or more \(1-5 \mathrm{~V} / 1 \mathrm{k} \Omega\) or more (\(\pm\)) \(1 \mathrm{~mA} / 10 \mathrm{k} \Omega\) or less (\(\pm 5 \mathrm{~mA} / 2 \mathrm{k} \Omega\) or less \(4-20 \mathrm{~mA} / 500 \Omega\) or less \\
4-12-20 mA/500 \(\Omega\) or less
\end{tabular} \& \[
\begin{aligned}
\& \pm 0.5 \% \\
\& \text { of span }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { 1\%p-p } \\
\& \text { MAX }
\end{aligned}
\] \& 0.7 s \& \[
\begin{gathered}
45- \\
65 \mathrm{~Hz}
\end{gathered}
\] \& \begin{tabular}{l}
\(\mathrm{V}: 3 \mathrm{VA}\) in w/o aux power, \\
1 VA in w/
\end{tabular} \& \& \begin{tabular}{l}
\(\mathrm{V}: \pm 10 \% \mathrm{w} / \mathrm{o}\) aux power, 0-120\% \\
w/ aux power \\
A: 0-200\% of rating
\end{tabular} \& 450g \\
\hline Reactive power \& \begin{tabular}{|c|}
\(1 ø 2 w\) \\
\hline \(1 ø 3 w\) \\
\hline \(3 ø 3 w\) \\
\hline \(3 ø 4 w\) \\
\hline
\end{tabular} \& 2376A \& \begin{tabular}{|l|}
10 \\
\hline 20 \\
\hline 30 \\
\hline 40 \\
\hline
\end{tabular} \& \[
\begin{aligned}
\& 110 \mathrm{~V} / 1 \mathrm{~A} \\
\& 110 \mathrm{~V} / 5 \mathrm{~A} \\
\& 220 \mathrm{~V} / 1 \mathrm{~A} \\
\& 220 \mathrm{~V} / 5 \mathrm{~A}
\end{aligned}
\] \& \[
\begin{array}{r}
\pm 10 \mathrm{mV} / 10 \mathrm{k} \Omega \text { or more } \\
\pm 5 \mathrm{~V} / 1 \mathrm{k} \Omega \text { or more } \\
\pm 10 \mathrm{~V} / 2 \mathrm{k} \Omega \text { or more } \\
1-5 \mathrm{~V} / 1 \mathrm{k} \Omega \text { or more } \\
\pm 1 \mathrm{~mA} / 10 \mathrm{k} \Omega \text { or less } \\
\pm 5 \mathrm{~mA} / 2 \mathrm{k} \Omega \text { or less } \\
4-12-20 \mathrm{~mA} / 500 \Omega \text { or less } \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& \pm 0.5 \% \\
\& \text { of span }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { 1\%p-p } \\
\& \text { MAX }
\end{aligned}
\] \& 0.7 s \& \[
\begin{gathered}
45- \\
65 \mathrm{~Hz}
\end{gathered}
\] \& \[
\text { A: } 1 \text { VA }
\] \& \& \begin{tabular}{l}
\(\mathrm{V}: \pm 10 \% \mathrm{w} / \mathrm{o}\) \\
aux power, \\
20-120\% \\
w/ aux power \\
A: 0-200\% \\
of rating
\end{tabular} \& 450g \\
\hline Phase \& \begin{tabular}{l}
1ø2w \\
1ø3w \\
3ø3w \\
\(3 \varnothing 4 w\)
\end{tabular} \& 2377A \& \begin{tabular}{|l|}
10 \\
\hline 20 \\
\hline 30 \\
\hline 40 \\
\hline
\end{tabular} \& \[
\begin{aligned}
\& 120 \mathrm{~V} / 1 \mathrm{~A} \\
\& 120 \mathrm{~V} / 5 \mathrm{~A} \\
\& 240 \mathrm{~V} / 1 \mathrm{~A} \\
\& 240 \mathrm{~V} / 5 \mathrm{~A}
\end{aligned}
\] \& \[
\begin{gathered}
\pm 10 \mathrm{mV} / 10 \mathrm{k} \Omega \text { or more } \\
\pm 6 \mathrm{~V} / 1.2 \mathrm{k} \Omega \text { or more } \\
1-5 \mathrm{~V} / 1 \mathrm{k} \Omega \text { or more } \\
\pm 1 \mathrm{~mA} / 10 \mathrm{k} \Omega \text { or less } \\
\pm 5 \mathrm{~mA} / 2 \mathrm{k} \Omega \text { or less } \\
4-12-20 \mathrm{~mA} / 500 \Omega \text { or less }
\end{gathered}
\] \& \(\pm 2^{\circ}\) \& \[
\begin{aligned}
\& \text { 1\%p-p } \\
\& \text { MAX }
\end{aligned}
\] \& 0.5 s \& \[
\begin{gathered}
45- \\
65 \mathrm{~Hz}
\end{gathered}
\] \& V: 2.5 VA in w/o aux power, 0.5 VA in w/ aux power \& not required \& \begin{tabular}{l}
\[
V: \pm 10 \%
\] \\
w/o aux power,
\[
50-120 \%
\]
\end{tabular} \& 370g \\
\hline Power factor \& \begin{tabular}{l}
\(1 ø 2 w\) \\
\hline \(1 ø 3 w\) \\
\hline \(3 ø 3 w\) \\
\hline \(3 ø 4 w\)
\end{tabular} \& 2377A \& \begin{tabular}{|l|}
11 \\
\hline 21 \\
\hline 31 \\
\hline 41 \\
\hline
\end{tabular} \& \& same as 2376 A \& \begin{tabular}{l}
\(\pm 3^{\circ}\) \\
(when \\
\(\pm 60^{\circ}\))
\end{tabular} \& \[
\begin{aligned}
\& \text { 1\%p-p } \\
\& \text { MAX }
\end{aligned}
\] \& 0.5 s \& \[
\begin{gathered}
45- \\
65 \mathrm{~Hz}
\end{gathered}
\] \& A: 1 VA \& \& \begin{tabular}{l}
w/ aux power \\
A: 10-140\% of rating
\end{tabular} \& 370g \\
\hline Freq \& ency \& 2378A \& \begin{tabular}{l}
01 \\
\hline 02 \\
\hline 03 \\
03
\end{tabular} \& \begin{tabular}{|l}
\(45-55 \mathrm{~Hz}\) \\
\(110,220 \mathrm{~V}\) \\
\(120,240 \mathrm{~V}\) \\
\hline \(55-65 \mathrm{~Hz}\) \\
\(110,220 \mathrm{~V}\) \\
\(120,240 \mathrm{~V}\) \\
\hline \(45-65 \mathrm{~Hz}\) \\
110 V \\
120 V \\
220 V \\
240 V
\end{tabular} \& \begin{tabular}{l}
same as 2371 A \\
\(5 \mathrm{~V} / 2 \mathrm{k} \Omega\) or more \\
\(10 \mathrm{~V} / 2 \mathrm{k} \Omega\) or more \\
\(1-5 \mathrm{~V} / 1 \mathrm{k} \Omega\) or more \\
\(1 \mathrm{~mA} / 10 \mathrm{k} \Omega\) or less \\
\(5 \mathrm{~mA} / 2 \mathrm{k} \Omega\) or less \\
\(4-20 \mathrm{~mA} / 500 \Omega\) or less \\
\(4.5-6.5 \mathrm{~V} / 2 \mathrm{k} \Omega\) or more \\
4.5-6.5 mA (\(1500 \Omega\) or less)
\end{tabular} \& \begin{tabular}{|c}
\(\pm 0.1 \mathrm{~Hz}\) \\
\(\pm 0.2 \mathrm{~Hz}\)
\end{tabular} \& \begin{tabular}{l}
\(1 \% p-p\) MAX
\(\qquad\) \\
1\%p-p \\
MAX
\end{tabular} \& 1 s

1 s \& | $45-$ |
| :---: |
| 55 Hz |

$55-$
65 Hz

$45-$

65 Hz \& 1.5 VA in w/o aux power, 0.5 VA in w/ aux power \& \& | $V: \pm 10 \%$ |
| :--- |
| w/o aux power, |
| 50-120\% |
| w/ aux power | \& 320g

\hline
\end{tabular}

Auxiliary power supply: AC $100 / 110 \mathrm{~V}, 120 \mathrm{~V}, 200 / 220 \mathrm{~V}, 240 \mathrm{~V} \pm 15 \%$, consumption: 2 VA
DC $24 \mathrm{~V} / 48 \mathrm{~V} \pm 15 \%, 85-143 \mathrm{~V}$, consumption: 1.5 W
*1 Response time is to reach 99% of output.
*2 Power flow measurement results in output of + or - polarity. Output polarity code to be specified.
*3 Type of no auxiliary power needs auxiliary power code to be specified.

* $45 \mathrm{~V} / 1 \mathrm{k} \Omega$ or more and $1 \mathrm{~mA} / 10 \mathrm{k} \Omega$ or less: auxiliary power required.

0.5 Class Transducer Model Coding System

1. Model	2. Input rating	3. Output rating	4. Aux. power supply	5. Out polarity
[first 3 digits]	01: DC50 mV	VLS: $0-5 \mathrm{~V}$	1: AC100/110 V ($50 / 60 \mathrm{~Hz}$) $\pm 15 \%$	2375A
237 :	02: DC1 V	VMT: 0-10 V	2: AC120 V ($50 / 60 \mathrm{~Hz}$) $\pm 15 \%$	N : non polarity
[last 4 digits]	03: DC5 V	VHB: $\pm 10 \mathrm{mV}$	3: AC200/220 V (50/60Hz) $\pm 15 \%$	R : polarity(power flow)
OA00 : model series	04: DC10 V	VLU: $\pm 5 \mathrm{~V}$	4: AC240 V (50/60Hz) $\pm 15 \%$	
1A00 : DC-DC isolator	05: DC25 v	VLY : $\pm 6 \mathrm{~V}$ (phase meter)	7: DC24/48 V $\pm 15 \%$	2376A, 2377A
2 A 00 : AC Voltage, current (average rectified)	$\begin{aligned} & \text { 06: DC60 V } \\ & \text { 07: DC1-5 V } \end{aligned}$	$\begin{aligned} & \text { VMS: } \pm 10 \mathrm{~V} \\ & \text { VMB: } 4.5-6.5 \mathrm{~V} \end{aligned}$	8: DC85 V-143 V N : none	M : negative polarity $(-)$ at lead
3A00 : AC Voltage, current (RMS rectified)	$\begin{aligned} & \text { 21: DC1 mA } \\ & \text { 24: DC4-20 mA } \end{aligned}$	(frequency meter) VLR: $1-5 \mathrm{~V}$		(+) at lag P : positive polarity (+) at lead
(true RMS rectified)	31: AC110 V	AFA : 0-1 mA		$(-)$ at lag
5:]: power	32: AC150 V	AFX: $0-5 \mathrm{~mA}$		
6: \square : reactive power	33: AC220 V	AFB: $\pm 1 \mathrm{~mA}$		lead : advance current
7:प్ర: phase	34: AC300 V	AFZ: $\pm 5 \mathrm{~mA}$		lag : advance voltage
10: 1ø2w	35: AC1 A	AHE: $4-20 \mathrm{~mA}$		
20 : 103w	36: AC5 A	AGF: $4.5-6.5 \mathrm{~mA}$		
30 : 3ø3w	37: AC120 V	(frequency meter)		
40:364w	38: AC240 V 39: AC480		Specified item at order	
7:102w	39: AC600 V		- model	
21 : 103w	$41: 110 \mathrm{~V} / 1 \mathrm{~A}$		- input rating, output rating	
31 : 303 w	42: $110 \mathrm{~V} / 5 \mathrm{~A}$		- reactive power, phase, power factor needs rela-	
8: $41: 304 \mathrm{w}$	43: $220 \mathrm{~V} / 1 / \mathrm{A}$ $44: 220 \mathrm{~V} / 5 \mathrm{~A}$			
8:01: frequency	44:220 V/5 A		- auxiliary power supply	
02 : $55-65 \mathrm{~Hz}$	46: $120 \mathrm{~V} / 5 \mathrm{~A}$		- cariblation power, reactive power	
$03: 45-65 \mathrm{~Hz}$	47:240 V/1 A		(for power, reactive power meter)	
	$48: 240 \mathrm{~V} / 5 \mathrm{~A}$		- VT ratio, CT ratio	

Fig-2 Relation of product model and specfication code (input rating)

input	DC voltage, current									AC voltage, current, frequency										power, reactive, phase, factor							
	50 mV	1 V	5 V	10 V	25 V	60 V	1-5V	1 mA	4-20mA	110 V	120 V	150 V	220 V	240 V	300 V	480 V	600 V	1A	5A	$\begin{gathered} 110 \mathrm{~V} \\ 1 \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} 110 \mathrm{~V} \\ 5 \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} 220 \mathrm{~V} \\ 1 \mathrm{~A} \end{gathered}$	$\begin{gathered} 220 \mathrm{~V} \\ 5 \mathrm{~A} \end{gathered}$	$\begin{gathered} 120 \mathrm{~V} \\ 1 \mathrm{~A} \end{gathered}$	$\begin{array}{\|c\|} \hline 120 \mathrm{~V} \\ 5 \mathrm{~A} \\ \hline \end{array}$	$\begin{gathered} 240 \mathrm{~V} \\ 1 \mathrm{~A} \end{gathered}$	$\begin{gathered} 240 \mathrm{~V} \\ 5 \mathrm{~A} \end{gathered}$
model	01	02	03	04	05	06	07	21	24	31	37	32	33	38	34	39	40	35	36	41	42	43	44	45	46	47	48
2371A	\bigcirc																										
2372A										\bigcirc																	
2373A										\bigcirc																	
2374A										\bigcirc																	
2375A																				\bigcirc							
2376A																				\bigcirc							
2377A																				\bigcirc							
2378A										\bigcirc	\bigcirc		\bigcirc	\bigcirc													

\bigcirc : standard product
Fig-3 Relation of product model and specfication code (output rating)

	DC voltage								DC current					
	5 V	10 V	$\pm 10 \mathrm{mV}$	$\pm 5 \mathrm{~V}$	$\pm 6 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	4.5-6.5V	1-5V	1 mA	5 mA	$\pm 1 \mathrm{~mA}$	$\pm 5 \mathrm{~mA}$	4-20mA	4.5-6.5mA
	VLS	VMT	VHB	VLU	VLY	VMS	VMB	VLR	AFA	AFX	AFB	AFZ	AHE	AGF
2371A	\bigcirc	\bigcirc						\bigcirc	\bigcirc	\bigcirc			\bigcirc	
2372A	\bigcirc	\bigcirc						\bigcirc	\bigcirc	\bigcirc			\bigcirc	
2373A	\bigcirc	\bigcirc						\bigcirc	\bigcirc	\bigcirc			\bigcirc	
2374A	\bigcirc	\bigcirc						\bigcirc	\bigcirc	\bigcirc			\bigcirc	
2375A	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2376A			\bigcirc	\bigcirc		\bigcirc		\bigcirc			\bigcirc	\bigcirc	\bigcirc	
$2377 \mathrm{~A} \square 0$			\bigcirc	\bigcirc	\bigcirc			\bigcirc			\bigcirc	\bigcirc	\bigcirc	
$2377 \mathrm{~A} \square 1$			\bigcirc	\bigcirc		\bigcirc		\bigcirc			\bigcirc	\bigcirc	\bigcirc	
2378A $\begin{gathered}01 \\ 02\end{gathered}$	\bigcirc	\bigcirc						\bigcirc	\bigcirc	\bigcirc			\bigcirc	
2378A 03	\bigcirc	\bigcirc					\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc

: standard product

Specific Features

- Compact width 40 mm

40 mm : DC-DC Isolator, AC current, AC voltage and Frequency. 55 mm : Power, Reactive power, Phase and power Factor Terminal cover: provided for every type.

- Auxiliary power applications

Applicable from non auxiliary power to AC or DC auxiliary power.

- Various output signals

Constant voltage outputs: $5 \mathrm{~V}, 10 \mathrm{~V}, 1-5 \mathrm{~V}$
Constant current outputs: $1 \mathrm{~mA}, 5 \mathrm{~mA}, 4-20 \mathrm{~mA}$
Especially, the constant current type canconnect a load corresponding to 10 V . So, it can stand with long distance wiring for such telemeter transmission and general industrial measurement.

- True RMS rectified type 2374A

For general application and high harmonic distortion wave caused by thyristor, the true RMS rectified type with logarithm conversion is recommended.

Fig-1 Relation between Crest factor and error in alternating current transducer

General Specification $\left.\begin{array}{c}\text { (JIS C1111-1989 } \\ \text { complied) }\end{array}\right)$

Type of Input: Floating
Working Temp.: $\quad-10-+50^{\circ} \mathrm{C}$
Working Humidity: $20-85 \%$ R.H.
Storage Temp.: $\quad-20-+60^{\circ} \mathrm{C}$
Instant Over-load: Current ---10 times 5 sec at rating 40 times 1 sec at rating
Voltage -- 2 times 10 sec at rating
Output adjustable range: more than $\pm 3 \%$ (depend on rating) External adjustment is available.
Insulation: $\quad 500 \mathrm{~V} \mathrm{DC}$, more than $100 \mathrm{M} \Omega$

- between terminal and case.
- between each terminal (input, output, ground and auxiliary power terminal)
Withstand: $\quad 1) 2,600 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}, 1$ minutes - between input terminal and case (including ground)
- between input and output terminal
- between auxiliary power terminal and input terminal or case (including ground)

2) $1,000 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}, 1$ minutes

- between output terminal and case (including ground)
Impulse:

Casing:
$5,000 \mathrm{~V},(1.2 \times 50) \mu \mathrm{sec}$

- between whole of input and power terminal and external case
- between whole of input and output and external case

1) Case

Firing retardant ABS resin (equal to UL94-V0)
2) Terminal board

Glass-fiber contained PBT (equal to UL94-V0)
3) Terminal cover

Clear poly-carbonade
4) Color : Black

Terminal screw:
M4
Dimensions: Refer to outline drawing
Accessary:

Manufacturing variation of
power/reactive power transducer
The transducer without specification code is adjusted by the following.

	Standard Rating		1 phase 2 wires			ase 3 wires
	Voltage	Current				ase 4 wires
$\begin{aligned} & \overline{0} \\ & \sum_{0}^{\mathbf{0}} \end{aligned}$	110 V	1 A	(\pm	100 W	(\pm	200 W
	110 V	5 A	(\pm	500 W		1,000 W
	220 V	1 A		200 W		400 W
	220 V	5 A		1,000 W		2,000 W

(\pm) means polarity of power.

	Standard Rating		1 phase 2 wires	1 phase 3 wires 3 phase 3 wires 3 phase 4 wires
	Voltage	Current		
	110 V	1 A	$\pm 100 \mathrm{var}$	$\pm 2200 \mathrm{var}$
	110 V	5 A	$\pm 500 \mathrm{var}$	$\pm 1,000 \mathrm{var}$
	220 V	1 A	$\pm 200 \mathrm{var}$	$\pm 400 \mathrm{var}$
	220 V	5 A	$\pm 1,000 \mathrm{var}$	$\pm 2,000 \mathrm{var}$

In case of model with external CT, VT, the followoing will be manufacturable.

	Standard Rating		Manufacturable Calibration Watts	
	Voltage	Current	1 phase 2 wires	1 phase 3 wires 3 phase 3 wires 3 phase 4 wires
\sum_{0}^{∞}	110 V	1 A	(\pm 72-(\pm) 164 W	(\pm 125-(\pm) 285 W
	110 V	5 A	(\pm 360-(\pm) 820W	(\pm 625-(\pm) 1,400W
	220 V	1 A	(\pm 144-(\pm) 328W	(\pm 250-(\pm) 570W
	220 V	5 A	(\pm 720-(\pm) $1,640 \mathrm{~W}$	(± 1 1,250-(\pm) 2,850W

(\pm) means polarity of power.

	Standard Rating		Manufacturable Calibration Vars	
	Voltage	Current	1 phase 2 wires	1 phase 3 wires 3 phase 3 wires 3 phase 4 wires
	110 V	1 A	$\pm 72- \pm$ 164var	$\pm 125- \pm 285 \mathrm{var}$
	110 V	5 A	$\pm 360- \pm 820 \mathrm{var}$	$\pm 625- \pm 1,400 \mathrm{var}$
	220 V	1 A	$\pm 144- \pm 328 \mathrm{var}$	$\pm 250- \pm 570 \mathrm{var}$
	220 V	5 A	$\pm 720- \pm 1,640 \mathrm{var}$	$\pm 1,250- \pm 2,850 \mathrm{var}$

Also manufacturable with the following condition
Also manufacturable with the following condition

Input Power (Reactive) Range	Tolerance	Response
40 to less than 65%	$\pm 1.0 \%$ of span	less 1 sec
25 to less than 40%	$\pm 2.0 \%$ of span	less 1 sec

100% input $1 \varnothing 2$ wires $=$ rating voltage \times rating current
$1 \varnothing 3$ wires $=2 \times$ rating voltage $(\mathrm{PI}-\mathrm{N}) \times$ rating current
$3 \varnothing 3$ wires $=\sqrt{3} \times$ rating voltage \times rating current
$3 \varnothing 4$ wires $=3 \times$ rating phase voltage \times rating current

Calculation for extarnal mounting VT, CT

Power transducer input $(\mathrm{p})=\frac{\text { Rating }}{\text { VT ratio } \times \text { CT ratio }}$
Please check that the results of the above culculation is within manufacturing variention.

Ex. 1 In case of rating $3 \varnothing 3$ wires 20 kW , VT440/110 V, CT30/5 A

$$
\mathrm{P}=\frac{20 \mathrm{~kW}}{(440 / 110) \times(30 / 5)}=833 \mathrm{~W}-- \text { Available }
$$

Ex. 2 In case of $1 \varnothing 2$ wires $7.5 \mathrm{~kW}, \mathrm{VT660/110} \mathrm{~V}, \mathrm{CT} 20 / 5 \mathrm{~A}$

$$
\mathrm{P}=\frac{7.5 \mathrm{~kW}}{(660 / 110) \times(20 / 5)}=312 \mathrm{~W}
$$

Torelance is $\pm 1.0 \%$ of span
In case of reactive power, the same calculation shall be applied.

[^0]: - Screw mounting
 - 40 mm width (DC-DC Isolator, AC Voltage / Current / Frequency)
 - 55 mm width (Power / Reactive Power / Phase / Power Factor)
 - Selective from various kind of output
 - 600 V AC input rating available
 - Compliance with JIS C1111-1989

