Why are the Measurement for Voltage, Current, and Power in Normal Mode Different Than Harmonic Mode?

The difference in measurement values can be attributed to the difference in calculation methods for normal mode and harmonic mode.
 
The voltage, current, and power in normal mode are displayed as the total of the measured values from all components (starting with the DC current component) in the bandwidth range. Therefore, even if there are signal components between the fundamental wave and the second order harmonic (interharmonic components exist), they are included in the total value that is displayed.
 
On the other hand, when measuring in harmonic mode, signal components between the fundamental wave component and 2nd order harmonic component are not included in the total values for voltage, current, and power. In other words, since the interharmonics are not included in the total value (fundamental wave + 2nd order + 3rd order...), basically the total value in harmonic mode is slightly smaller than that of normal mode.
 
Please see the attached images highlighting the differences between normal mode and harmonic mode.

Related Products & Solutions

Precision Power Analyzer WT3000

With 0.02% accuracy and 1MHz bandwidth, the WT3000 delivers where the highest precision measurements are required. It is the industry standard for R&D work on inverters, motor drives, lighting systems and electronic ballasts, UPS systems, aircraft power, transformer testing, and other power conversion devices.

WT1800 High Performance Power Analyzer

The WT1800 Power Analyzer offers maximum flexibility with up to six wattmeter elements, high bandwidths, simultaneous high speed digitizing, and wide voltage and current ranges. Although this model is still available, the newer WT1800E offers higher accuracy.

WT2010/WT2030 Digital Power Meters

The WT2000 digital powermeter series has been designed with emphasis on basic performance (bandwidth, accuracy, response speed, and noise immunity) from the viewpoint of measurement of electrical quantities. The broad range of functions of these power analyzers enable them to be used in various fields of applications.

WT500 - Mid Range

  • Power and Harmonic (THD) Measurements with Independent Range Controls
  • Efficiency measurements of AC/DC or DC/AC Inverters & Motors

 

Power Analyzers and Power Meters

Measure characteristics of devices that generate, transform or consume electricity. Also called power meters or wattmeters, these devices measure parameters such as true power (watts), power factor, harmonics, and efficiency.

Precision Making

Top