Library

Documents & Downloads
  • Brochures
  • Instruction Manuals
  • Specifications
  • Software
  • Firmware
  • Drawings
Resources
  • Application Notes
  • White Papers
  • Leaflet
  • Media Publications
  • FAQs
  • Technical Articles
  • T&M Magazines
  • Training Modules
  • Case studies
  • eBooks
  • Product & Services Overview
Videos
  • Product Overviews
  • How-tos
  • Webinars
Products
Industries
  • Aerospace
  • Appliances
  • Automotive
  • Industrial & Consumer Electronics
  • Motors & Drives
  • Optical Communications & Networks
  • Photonic Sensing & Analysis
  • Quantum Computing
  • Renewable Energy
  • Semiconductor & Embedded Systems
1-20 of 25 results
White Paper
Oct 2024
Overview:

Yokogawa developed the PX8000 precision power scope, a high-accuracy power meter, which can measure reactor losses in inverters, motors and the like, by analyzing waveforms. The major specifications of the instrument are as follows: basic accuracy is 0.2%, voltage measurement bandwidth is DC and 0.1 Hz to 20 MHz (-3dB, typical), and current measurement bandwidth is DC and 0.1 Hz to 10 MHz (-3dB, typical). The PX8000 offers the functionality usually provided by a waveform measuring instrument, such as a variety of triggers, tracking, statistical processing, and waveform parameter calculation functions. Furthermore, to improve measurement accuracy at low power ratios this product comes with a de-skew function for correcting signal delays from the current sensor and a data latency adjustment function. This paper describes the PX8000, focusing on a newly developed element dedicated for power measurement and technology for phase correction.

Overview:

We have developed the WT3000 Precision Power Analyzer, which features the world's highest measurement accuracy of ±0.02% of reading and a measurement bandwidth of 0.1 Hz to 1 MHz as well as DC signals.

Overview:

We have developed the new SL1000 high-speed data acquisition unit which features a maximum sampling rate of 100 MS/s with 16 channels, and yet still offers 1-kV insulation. This PC-based instrument can also update waveforms at a high rate on the PC monitor like a single instrument, even for large quantities of data, due to the newly developed GIGAZoom Engine for data compression. This paper describes the functions and technologies of the high-speed data acquisition in the SL1000.

Overview:

The request for lower uncertainties in power measurements are increasing,especially in the transformer industries. Their role is to ensure that the electricity is distributed in an efficient and reliable way. 

Overview:

This paper describes a compact optical channel monitor and a delayed interferometer having free-space optical elements such as lenses or mirrors, as an application of microoptics. These devices have been developed to be built into dense wavelength division multiplexing (DWDM) transmission systems. These optics use a Gaussian beam which is emitted through single-mode optical fibers and located near the optical axis. This paper explains the optical designs of these devices based on the Gaussian beam's behavior.
SANPEI Yoshihiro*1  SUZUKI Yasuyuki*2   IEMURA Kouki*3   ASANO Junichirou*3


*1Communication and Measurement Business Headquarters, Optical Communication Measurement Development Department

*2Communication and Measurement Business Headquarters, Core Technology Development Department

*3Photonics Business Headquarters, Engineering Department IV

Overview:

We have developed the AQ6375 Optical Spectrum Analyzer  grating-based desktop optical spectrum analyzer, which can measure an optical spectrum over a wide wavelength range from 1.2 to 2.4 m with high wavelength resolution at high speed. Despite the popularity of desktop optical spectrum analyzers in the telecommunication wavelength region, a large-scale optical spectrum measurement system with a monochromator has commonly been used for measuring the long wavelength region, and so there was a need for a desktop optical spectrum analyzer for long wavelengths. Deep optical absorptions appearing in the long wavelength region around 2 m caused by CO2, NOX and H2O are attracting attention in the environmental and medical fields, and thus sensitive measuring equipment by laser absorption spectroscopy using a near infrared semiconductor laser is becoming more popular. With excellent optical spectrum measurement capabilities (high resolution and high speed), operability and maintenance performance, the AQ6375 Optical Spectrum Analyzer optical spectrum analyzer will contribute to the performance improvement and spread of near-infrared semiconductor lasers used in laser absorption spectroscopy.

Overview:

Standards driving energy efficiency classifications are a driving force behind the development of the next generation of motor and drive technologies. Learn more here.

Industries:
Overview:

Government agencies that define the standardization of energy efficiency metrics continue to be a driving force behind the development of the next generation electric vehicle powertrains. These metrics require manufacturers to have high confidence in their measurements and motivate the optimization of efficiency.

Industries:
Overview:

We have added a harmonics current/flicker measuring function to the WT3000 Precision Power Analyzer with world-leading accuracy of power measurement. We have also created PC software for harmonics current/flicker measurement. This PC software and the WT3000 comply with the IEC61000- 3-2 harmonics current standard and IEC61000-3-3 voltage fluctuation/flicker standard, thus enabling the electrical power, harmonics current and flicker of electrical equipment to be measured precisely with a single unit. This paper outlines the harmonics current standard and voltage change/flicker standard, along with the measurement principle and PC-based software of the WT3000.

Overview:

This white paper describes the WT1800, a precision power analyzer that has been replaced by the WT1800E, a unit with numerous improvements including better accuracy. Please visit the WT1800E product page to learn more about the WT1800E.

To keep pace with the increasing speed of switching devices in inverters, Yokogawa has developed the WT1800 precision power analyzer with 10 times faster sampling speed and 5 times wider frequency bandwidth compared with previous models. Its basic accuracy is 0.15% and the frequency bandwidth of voltage and current is 0.1 Hz to 5 MHz (-3 dB, Typical) including the DC component. With up to six inputs, a single WT1800 unit can measure the efficiency of three-phase inverters. In addition, the high-speed data capturing mode allows the WT1800 to measure transient power. This paper describes the high-speed, real-time power measurement technologies underlying these functions.

Precision Making

Top