This high-speed data acquisition system includes software (DL950ACQAPI.dll) that provides an application programming interface (API) for obtaining waveform data being acquired by the DL950 series.
The API is provided as a dynamic link library (DLL). The API can be used by linking user applications with this DLL.
The API supports two acquisition modes: free run and trigger. The API supports connections to multiple DL950s but does not support multi-unit synchronization (/C50 option).
(1) Free run mode
Free run mode is used to acquire data from the start to the end of waveform acquisition.
Zoom waveform display is not possible on the DL950 during waveform acquisition in free run mode.
Waveform acquisition specifications in free run mode
Maximum data rate: 320 MB/s (10 MS/s×16ch) for 10Gbit Ethernet connection
Maximum data rate: 6.4 MB/s (200 kS/s×16ch) for 1Gbit Ethernet/USB connection
Maximum waveform acquisition time: 10 days (maximum operation time guaranteed for this API)
(2) Trigger mode
Trigger mode is used to acquire waveform using triggers. There are two trigger modes available with the API:
(i) Synchronous mode in which the DL950 acquires waveforms synchronously with the PC.
(ii) Asynchronous mode in which the DL950 acquires waveforms asynchronously with the PC.
Note that the API does not support the following features.
This software can be used to perform the following functions. For details, see User’s Manual.
This software package contains the following items.
File name | Content |
---|---|
DL950ACQAPI.dll | ACQAPI library |
DL950ACQAPI64.dll | ACQAPI Library 64-bit Version |
DL950ACQAPI.lib | ACQAPI Import Library for C++ |
DL950ACQAPI.h | Function Declaration Header File for C++ |
DL950ACQAPINet.dll | Free Run API Library for .NET |
tmctl.dll | Communication Library |
tmctl64.dll | Communication Library 64-bit Version |
DL950 (Applicable DL950 firmware version is 1.20 or later.)
A PC running the English or Japanese version of Windows 10 (32 bit or 64 bit)
Note that when waveform acquisition in free run mode is performed using this software,
data is saved in a specified buffer. See User’s Manual for more details.
Visual Studio 2017 or later, .NET Framework 4.7 or later
When using 10Gbit Ethernet connection
When using 1Gbit Ethernet or USB connection
Date | Version | Contents |
---|---|---|
Feb 26, 2024 | 1.1.0.1 | Fixed some minor bugs |
Jun 17, 2022 | 1.1.0.0 | Added Trigger mode |
Dec 17, 2021 | 1.0.2.0 | New release |
Maximum power point tracking (MPPT) charge controllers play a crucial role in the optimization of renewable energy system efficiency and performance. Through dynamic tracking of a renewable energy source’s maximum power point, an MPPT controller enables more efficient energy harvesting, faster charging, and adaptability to changing environmental conditions.
Having multiple memory options allows engineering groups to optimize how data is stored, no matter if you need to record for a long time at slower sampling rates, do a fast capture at high sampling rates, or anything in between.
The Yokogawa Test&Measurement DL950 ScopeCorder operates as an oscilloscope and incorporates the ability to record data for long periods of time like a data acquisition recorder. There are four memory types on the DL950 ScopeCorder: internal memory, solid state drive, flash memory, and PC storage through the IS8000 Integrated Test and Measurement Software Platform. This videos talks about the advantages of each of these and how to pick the best data recording method for you.