The WT500 Power Analyzer excels at single- and three-phase power measurements. Standard features include a color TFT display and USB interface for communications and memory. The instrument has a basic power accuracy of 0.1%, maximum inputs of 1000 V, 40 A and a measurement bandwidth of DC to 100 kHz.
Intuitive control by using cursor keys in four different directions.
To reduce setting errors, menus display settings in order of relative importance in order.
Two USB ports for peripherals are installed for direct data saving (up to 1 G byte) in USB memory at shortest intervals.
The saved data can be opened in applications such as Excel.
* Excel is a registered trademark of Microsoft Corporation in the U.S.A.
In addition to numerical data, the WT500 can display input signal waveforms and trends (time variation of numerical data).
Bar graph display and vector display are also available with the harmonic measurement (/G5) option.
*1 Waveforms of up to approximately 5 kHz can be displayed.
*2 Excludes single-phase models.
Split screen display for numerical values and waveforms is not available.
Two efficiency calculations can be set by selecting input elements or output elements from a list. |
Example: η1 = PΣ/P1 x 100% η2 = PΣ/P2 x 100% |
Only necessary items within the measured data like voltage, current, and power can be saved in USB memory in binary or CSV format (up to 1 GB).
Files saved in CSV format can be opened in general-purpose applications such as Excel to allow displaying of data in graphs.
In addition to integration functions of active power (WP), current (q), reactive power (WQ), and apparent power (WS), a new feature provides measurement of bought and sold watt hours. Also, average active power can be calculated over an integration interval.
This feature is useful for evaluating the power consumed by intermittent-control instruments in which the power value fluctuates. Average active power is calculated by using user-defined settings.
GP-IB communication enables you to control the WT500 or transfer data from a PC.
Data can be transferred via Ethernet* communication.
It enables file transfers using an FTP server.
* 100BASE-TX
Current can be measured by using current clamps without disconnecting power supply wiring (voltage output type). By setting an external current sensor conversion ratio, it can support various types of current clamp-on probes.
By connecting to a monitor, you can create large displays of numerical values and waveforms. This function is convenient for simultaneously confirming data on multiple monitors, or to check data remotely.
This function enables simultaneous measurement of normal and harmonic data. Harmonic components of up to the 50th order can be measured. With the WT500 you can simultaneously confirm voltage, current, and the distortion factor (THD) as well as measure the distortion factor without switching modes.
![]() |
![]() |
|
Harmonic Dual List | THD measurement |
This function allows you to calculate individual phase voltages and phase currents from the line voltages and phase currents measured in a three-phase, three-wire (3P3W) system. The phase voltage can be calculated from the line voltage measured with the three-phase, three-wire (3V3A) method. This is useful when you want to determine the phase voltage in a DUT with no neutral line by using the three-phase, three-wire (3V3A) method.
Note: This function cannot be installed on products with only one element.
In addition to the standard two channels of frequency measurement, an option is available for frequency measurement on all channels. This option provides frequency measurement of voltage and current on all channels with input elements 1 through 3 installed.This is necessary when you want to measure voltage and current frequency from the instrument's I/O as well as voltage and current frequencies of multiple items under test at the same time.
Note: This function cannot be installed on products with only one input element.
Example of basic characteristics showing the WT500's high precision
Connection for the Measurement Cables and Adapters
Product | Part no. | Specifications | Order quantity |
Output connector | B8200JQ | D-SUB 9-pin, with 2 screws | 1 |
Load resistors | B8200JR | 10 Ω, 0.25 W x 4 Connect 4 in parallel to set resistance to 2.5 Ω. |
1 |
Connection Diagram for Clamp-on Probe
*Don't connect and use the current input terminal and EXT terminal simultaneously.
For connection the external input of the WT3000 to the current sensor.
Length: 50cm
AC/DC current sensors capable of highly accurate measurement starting in DC range.
Safety-terminal-binding-post adapter. Use for circuits having voltage levels no greater than 42 V.
Special AC-Input Clamp-on Probes for Large-current Hot Line Measurement
Rated at 300 V. Attaches to the 758917 test leads. Sold in pairs.
For conversion between BNC and female banana plug
Applicable for DL750/DL750P, SL1000 & SL1400.
Screw-fastened adapters. Two adapters in a set. 1.5 mm Allen Wrench.
Photovoltaic power generation has gained attention in recent years, largely due to a new sense of urgency regarding the prevention of global warming.
Wind power is a renewable energy source that is being aggressively promoted (particularly in Europe) in order to reduce emissions of the greenhouse gasses that are responsible for global warming
To evaluate AC adaptors, engineers must acquire the voltage.
Energy consumption in low-power and standby modes is an important issue due to increased awareness that energy resources are becoming limited and demand for energy-saving household electrical appliances continues to grow. IEC62301 Ed2.0 (2011) and EN 50564:2011 define standby mode as the lowest energy consumption of an appliance not performing its main function, when connected to the mains. IEC62301 Ed2.0 (2011) defines test methods and requirements for both the mains supply and the test equipment. It is crucial that design and test engineers choose highly accurate power measurement tools to confirm that their devices meet these requirements.
Prevention of global warming has become an issue in recent years, and industry is turning more and more toward stricter energy savings policies and the use of renewable energy.
In recent years the buzzword "all electric" is becoming popular, which refers to kitchen appliances, water heaters, and other devices in the home all being supplied with electric power.
These days people are talking about the problem of energy depletion, and the industry is turning more and more toward stricter energy savings policies and the use of renewable energy.
The Precision Power Analyzer WT3000 D/A output terminal is electrically isolated from the case. For all other models, the D/A output terminal is connected to the case.
In the three-phase three-wire, or 3V3A wiring scheme, the phase angle of voltage and current input to each input differs from that of the actual load because it is the line to line voltage that is measured. In ...
The measurement intervals of the measured I/O data must overlap exactly. Check the sync source setting. For example, route the input to a three-phase device under measurement to input elements 1-3 on the power meter, ...
To use USB interface on the WT500 and WT1800 Power Analyzer from NI LabVIEW environment, you will need to use the USB driver from National Instruments. This USB driver is usually installed when you install NI-VISA and is called the ...
When the WT1600 Digital Power Analyzer is set into Integration mode, the averaged power (watt) values can be calculated and displayed. This is available only by using the User-Defined Function feature found in the MEASURE button menu. The ...
You can not use LabVIEW and WTviewer to communicate with the PC using same USB driver. The USB driver for LabVIEW and the USB driver for WTviewer is different. Yokogawa's YKMUSB driver is used by WTviewer ...
This is to prevent an open current circuit. Among non-Japanese power meters, there are products that also use safety terminals for current terminals. Safety terminals can be said to be safe because the terminal is not ...
The WTViewer Save Setting feature will only save the setting information of the WTViewer. The Save Setting feature will NOT save the setting information of the instrument. The saved file for the WT500, WT1800 or ...
Although WTViewer is not officially supported under the Linux environment, users have successfully done so using WINE (flavor of Linux) via RS232. For connectivity to WT210/WT230, WTViewer requires that the meter be set ...
Yes, please contact your nearest Yokogawa representative for more details.
The following product tutorial guides have been created for the WT and PZ Series Power Meter and Analyzer instruments and are available for download. Each tutorial contains quick and easy steps to help you get started ...
The accuracy of a measurement instrument varies with the range over which a reading is measured.
But what if different manufacturers specify this range differently in their instruments?
This article explores the impact of range definitions on measurement accuracy and how one can be mindful when comparing accuracy across instruments.
Are you achieving the levels of accuracy you need?
This article outlines the top reasons for inaccuracies in power measurements and how to tackle them.
Download the article to learn about:
Energy efficiency directives from bodies like International Electro technical Commission (IEC), European commission, California Energy Commission (CEC) and others govern standards across various classes of electrical, electronic and mechatronic equipment.
This infographic provides a snapshot guide for making reliable power measurements across your product development lifecycle with particular emphasis on the high accuracy needs of compliance testing.
This training module covers the following topics: