IEC62301 Standards Testing for Standby Power Measurement

Introduction

Energy consumption in low-power and standby modes is now recognized as an important issue due to the increased awareness that energy resources are becoming more limited and because the demand for energy-saving household electrical appliances continues to grow.

Standby power consumption is defined as the minimum power draw when a device is plugged in to utility grid power.

What is the IEC62301 standard?

Internationally recognized standards IEC62301 Ed2.0 (2011) and EN 50564:2011 define standby mode as the lowest energy consumption of an appliance not performing its main function, when connected to the mains. Additionally, IEC62301 Ed2.0 (2011) defines the test methods and requirements for both the mains supply and the test equipment. Appliances that typically fall under the umbrella of these standards include those that turn on almost instantly without a delay for warm-up, such as smart home devices, TVs, anything that get switched on with a remote, and even some plug-in chargers for cell phones and laptops.

Figure 1 Examples of devices that use standby power | Yokogawa Test&Measurement

Figure 1. Examples of devices that use standby power.

 

Manufacturers of domestic electrical appliances and related equipment that seek to develop and market products that are certified as operating with high efficiency and minimum standby power consumption must perform strict standby power testing as determined by government-backed programs such as ENERGY STAR and the EU Eco Directive.

As these energy efficiency and environmental protection programs continue to expand, their requirements become more stringent, resulting in a drop in the standby power level necessary to confirm compliance. It is crucial that design and test engineers choose highly accurate power measurement tools to confirm that their devices meet these requirements.

 

The Challenge: Measuring Standby Power With Precision

The IEC62301 Ed2.0 (2011) standard defines the relevant test conditions for accurate measurement of standby power. Requirements for the measuring device include the ability to measure low current and power factor, crest factor, harmonic content, and energy consumption over time if the power consumption fluctuates. For this reason, a power analyzer is typically used to measure standby power.

IEC 62301 defines testing conditions as follows:

  • Ambient temperature: 23°C (+/- 5) with still air.
  • Power supply harmonic content: Should not exceed 2% up to the 13th harmonic.
  • Crest factor: The ratio of peak value to RMS value of the test voltage should be between 1.34 and 1.49.

Accuracy requirements for measuring equipment:

  • For measurements higher than 0.5 Watts, the uncertainty must be less than 2% at a 95% confidence level.
  • The power measurement instrument must resolve:
    • 0.01 Watts or less for measurements below 10 Watts.
    • 0.1 Watts or less for measurements above 10 Watts (up to 100 Watts).

The Solution: Power Analyzers and Software for IEC62301 Compliance

For easy and accurate measurements, Yokogawa Test&Measurement’s Power Consumption Measuring Software connects with WT series power analyzers and satisfies the requirements of IEC62301 Ed2.0 (2011), for household electrical appliance standby power measurement, and EN 50564:2011, for electrical and electronic household and office equipment low power consumption measurement.

Connection method

A power analyzer can be connected to the software using GPIB, Ethernet, USB, or RS-232 by selecting the appropriate power analyzer and connection method shown on the Connection screen. Click Device Search, select the proper instrument, and then click Connect to establish the connection.

Figure 2 Connection screen showing a successfully connected power analyzer | Yokogawa Test&Measurement

Figure 2. Connection screen showing a successfully connected power analyzer.

 

Preparing for measurement

The Settings screen allows users to make selections based on their specific testing requirements including the region, standard, measurement period, and more. The region selected determines the rated voltage and frequency. Users can also specify stability judgment algorithms to include linear regression, cumulative average, and three-section compare algorithms.

Figure 3 The Settings screen allows for test configuration based on user specific requirements | Yokogawa Test&Measurement

Figure 3. The Settings screen allows for test configuration based on user-specific requirements.

 

Test report editing

A customizable test report is generated that includes information such as test and lab details, appliance details, and test parameters. Manually-input comments are also visible on the report.

Figure 4 The Report Edit function allows for customizable test report details | Yokogawa Test&Measurement

Figure 4. The Report Edit function allows for customizable test report details.

 

Making a compliant standby power measurement

On the Condition and Measurement screen, users can start measurements, view trends, and review measurement data. Trend settings are configurable and allow users to select the trends they want to view, change colors, turn graticule and scale values off or on, and adjust the time per division.

Figure 5 Condition and Measurement screen | Yokogawa Test&Measurement

Figure 5. The Condition and Measurement screen initiates the test and updates as the test is run.

 

Reporting

Once testing is complete, a report is generated and ready to save on the output screen as a PDF, CSV, or both. For quicker and easier testing, the connection method and measurement settings can be saved and set to automatically load the next time the software is in use.

IEC62301 Test Report

Figure 6 IEC62301 Standards Example Test Report for Standby Power Measurement | Yokogawa Test&Measurement

Figure 6. Example test report.

 

Learn More About Yokogawa WT Series Precision Power Analyzers

Many devices that use standby power remain plugged in even when not in active use. Though these typically have a low power draw, with multiple devices plugged in year-round, a household or business is often consuming (and paying for) considerably more power than what they expect. To save both energy and money, standby power efficient devices, as defined by IEC62301 Ed2.0 (2011) and EN 50564:2011, must be used.

For design and test engineers to make accurate measurements that meet ENERGY STAR and EU Eco Directive mandates, Yokogawa Test&Measurement Power Consumption Measuring Software, combined with a WT series power analyzer (such as a WT300E), allows for easy setup, testing, and measurement of standby, test, and measure standby power in a variety of appliances. The ability to view trend data via custom-generated reporting means that verifying a device meets requirements is easier than ever.

Learn more about the Yokogawa Test&Measurement solutions and products mentioned in this app note:

Indústrias Relacionadas

Produtos e Soluções Relacionadas

Precision Power Analyzer WT3000

With 0.02% accuracy and 1MHz bandwidth, the WT3000 delivers where the highest precision measurements are required. It is the industry standard for R&D work on inverters, motor drives, lighting systems and electronic ballasts, UPS systems, aircraft power, transformer testing, and other power conversion devices.

WT1800 High Performance Power Analyzer

The WT1800 Power Analyzer offers maximum flexibility with up to six wattmeter elements, high bandwidths, simultaneous high speed digitizing, and wide voltage and current ranges. Although this model is still available, the newer WT1800E offers higher accuracy.

WT1800E - Alto Desempenho

  • Medições de potência e harmônicos (THD) até a ordem 500, 
  • Eficiência Elétrica & Mecânica de inversores e motores em veículos elétricos  e híbridos

 

 

WT1800R High-Performance Power Analyzer

  • Power, harmonics (THD) measurements (up to 500th order)
  • Electrical and mechanical efficiency of inverters and motors in EV and HEV

WT300E - Economia

  • Medições de consumo em "stand by", Energy Star®, SPEC Power® e IEC62301/EN50564
  • Avaliação e teste de baterias, eletrodomésticos e "nobreaks"

 

WT500 - Mid Range

  • Power and Harmonic (THD) Measurements with Independent Range Controls
  • Efficiency measurements of AC/DC or DC/AC Inverters & Motors

 

WT5000 - Analisador de Potência de Precisão

  • WT5000 o analisador de potência de precisão com acurácia superior
  • 7 elementos de entrada intercambiáveis
  • 4 entradas de medição de motores
  • Teste de harmônicos em conformidade com a IEC61000-3-2

Analisadores de Potência e Medidores de Potência

A Yokogawa, a maior fabricante mundial de analisadores e medidores de energia e energia, fornece uma ampla gama de analisadores de energia digital para atender a todos os requisitos.

Precision Making

Topo