技术与服务热线:400 820 0372

IEC62301 Standards Testing for Standby Power Measurement

下载 (5.0 MB)

Introduction

Energy consumption in low-power and standby modes is now recognized as an important issue due to the increased awareness that energy resources are becoming more limited and because the demand for energy-saving household electrical appliances continues to grow.
 

Background

Internationally recognized standards IEC62301 Ed2.0 (2011) and EN 50564:2011 define standby mode as the lowest energy consumption of an appliance not performing its main function, when connected to the mains. Additionally, IEC62301 Ed2.0 (2011) defines the test methods and requirements for both the mains supply and the test equipment. Appliances that typically fall under the umbrella of these standards include those that turn on almost instantly without a delay for warm-up, such as smart home devices, TVs, anything that get switched on with a remote, and even some plug-in chargers for cell phones and laptops.

Figure 1 Examples of devices that use standby power | Yokogawa Test&Measurement

Figure 1. Examples of devices that use standby power.

 

Manufacturers of domestic electrical appliances and related equipment that seek to develop and market products that are certified as operating with high efficiency and minimum standby power consumption must perform strict standby power testing as determined by government-backed programs such as ENERGY STAR and the EU Eco Directive.

As these energy efficiency and environmental protection programs continue to expand, their requirements become more stringent, resulting in a drop in the standby power level necessary to confirm compliance. It is crucial that design and test engineers choose highly accurate power measurement tools to confirm that their devices meet these requirements.

 

The Challenge

The IEC62301 Ed2.0 (2011) standard defines the relevant test conditions for accurate measurement of standby power. Requirements for the measuring device include the ability to measure low current and power factor, crest factor, harmonic content, and energy consumption over time if the power consumption fluctuates. For this reason, a power analyzer is typically used to measure standby power.

 

The Solution

For easy and accurate measurements, Yokogawa Test&Measurement’s Power Consumption Measuring Software connects with WT series power analyzers and satisfies the requirements of IEC62301 Ed2.0 (2011), for household electrical appliance standby power measurement, and EN 50564:2011, for electrical and electronic household and office equipment low power consumption measurement.

Connection method

A power analyzer can be connected to the software using GPIB, Ethernet, USB, or RS-232 by selecting the appropriate power analyzer and connection method shown on the Connection screen. Click Device Search, select the proper instrument, and then click Connect to establish the connection.

Figure 2 Connection screen showing a successfully connected power analyzer | Yokogawa Test&Measurement

Figure 2. Connection screen showing a successfully connected power analyzer.

 

Preparing for measurement

The Settings screen allows users to make selections based on their specific testing requirements including the region, standard, measurement period, and more. The region selected determines the rated voltage and frequency. Users can also specify stability judgment algorithms to include linear regression, cumulative average, and three-section compare algorithms.

Figure 3 The Settings screen allows for test configuration based on user specific requirements | Yokogawa Test&Measurement

Figure 3. The Settings screen allows for test configuration based on user-specific requirements.

 

Test report editing

A customizable test report is generated that includes information such as test and lab details, appliance details, and test parameters. Manually-input comments are also visible on the report.

Figure 4 The Report Edit function allows for customizable test report details | Yokogawa Test&Measurement

Figure 4. The Report Edit function allows for customizable test report details.

 

Making a compliant standby power measurement

On the Condition and Measurement screen, users can start measurements, view trends, and review measurement data. Trend settings are configurable and allow users to select the trends they want to view, change colors, turn graticule and scale values off or on, and adjust the time per division.

Figure 5 Condition and Measurement screen | Yokogawa Test&Measurement

Figure 5. The Condition and Measurement screen initiates the test and updates as the test is run.

 

Reporting

Once testing is complete, a report is generated and ready to save on the output screen as a PDF, CSV, or both. For quicker and easier testing, the connection method and measurement settings can be saved and set to automatically load the next time the software is in use.

IEC62301 Test Report

Figure 6 IEC62301 Standards Example Test Report for Standby Power Measurement | Yokogawa Test&Measurement

Figure 6. Example test report.

 

Recommendations

Many devices that use standby power remain plugged in even when not in active use. Though these typically have a low power draw, with multiple devices plugged in year-round, a household or business is often consuming (and paying for) considerably more power than what they expect. To save both energy and money, standby power efficient devices, as defined by IEC62301 Ed2.0 (2011) and EN 50564:2011, must be used.

For design and test engineers to make accurate measurements that meet ENERGY STAR and EU Eco Directive mandates, Yokogawa Test&Measurement Power Consumption Measuring Software, combined with a WT series power analyzer (such as a WT300E), allows for easy setup, testing, and measurement of standby, test, and measure standby power in a variety of appliances. The ability to view trend data via custom-generated reporting means that verifying a device meets requirements is easier than ever.

Learn more about the Yokogawa Test&Measurement solutions and products mentioned in this app note:

相关行业

相关产品和解决方案

功率分析仪 WT500

中等量程的WT500小巧且便于使用。使用其彩色TFT显示器可以观测数值和波形测量。提供1到3个输入单元,基本功率精度为0.1%,带宽为100kHz。

数字功率计 WT300E系列

WT300E系列数字功率计是久负盛名的横河(Yokogawa)紧凑型功率计的第五代产品。横河的功率计产品在确保能耗标准和电气设备功耗测量的领域中长期扮演至关重要的角色。 WT300E系列包括:WT310E单相输入型;WT310EH单相输入/大电流型;WT332E 2输入单元型;WT333E 3输入单元型,精度为读数的0.1% +量程的0.05%。 WT310E提供的电流测量功能最低到50微安左右,高至26安培RMS,能够轻松支持客户测试自己的产品是否符合能源之星、SPECpower 、IEC62301 / EN50564等标准 ,进行电池和待机功耗等低水平电压测试,使用WT300E系列无疑是这些应用领理想解决方案。

高性能功率分析仪 WT1800E系列

精度 – 在同类功率分析仪器中, WT1800E能保证功率精度达到“ 读数的0.05% + 量程的0.05%” , 它可以执行多达500次谐波分析(50/60Hz基波频率)。

可靠 – 测量需要重复执行并需要追求准确性。WT1800E稳定性极高, 无论现在还是将来, 都可以确保完成精准的测量。

灵活 – WT1800E不但拥有最多6输入通道、 宽量程显示和分析功能, 还可以和电脑相连接,能在功率效率和谐波分析领域为客户提供广泛的测量解决方案。

高性能功率分析仪 WT1800系列

高端WT1800是WT1600的升级产品,可应用于从节能到高负载应用在内的各种应用领域。WT1800拥有6单元输入能力,可提供最大的灵活性和5MHz带宽下0.1%的基本功率精度。

高精度功率分析仪 WT3000

WT3000高精度功率分析仪提供最高精度的测量。此产品已成为行业标准,用于变频器、电机驱动器、照明系统和电子镇流器、UPS系统、飞机电力系统、变压器测试和其它电力转换设备的研发。WT3000的基本功率精度达0.02%,带宽为1MHz。

高精度功率分析仪 WT5000

高精度功率分析仪WT5000为工程师们提供通用的平台,不仅能提供当前所需的可靠测量,还能备战未来挑战。

数字功率分析仪

功率计或称瓦特计,可以测量产生、转换或消耗电能的设备各项特征,包括设备的各项参数,如:功率(瓦特)、功率因数、谐波和效率等等。

YOKOGAWA数字功率分析仪,性能优越、测量可靠,支持各种应用,非常值得拥有。尤其是YOKOGAWA WT300E功率计,在全球功率计市场上口碑与地位日益跃升。

Precision Making

返回顶部
WeChat QR Code
微信扫一扫
获得更多专业服务