AQ6374E Wide Wavelength Range Optical Spectrum Analyzer 350 - 1750 nm

Wide Wavelength Range & High Optical Performance OSA

The AQ6374E Wide Range Optical Spectrum Analyzer from Yokogawa Test&Measurement covers wavelengths from 350 to 1750 nm, including visible light (380 - 780 nm) and telecommunication wavelengths.

  • Wide wavelength range: 350 - 1750 nm
  • High wavelength resolution: 0.05 nm (full wavelength range)
  • High wavelength accuracy: ±0.05 nm (633/1523 nm), ±0.2 nm (350 - 1750 nm)
  • Close-in dynamic range: 60 dB (λPK ±1 nm)
  • Sensitivity: -80 dBm (900 - 1600 nm), -70 dBm (400 - 900 nm)

World-Class Optical Performance

  • Wide dynamic range: 60dB (peak ±1.0 nm)
  • Wide level range: +20 to -80dBm
  • Fast measurement: 0.5 sec. (100 nm span)
  • Wide wavelength range: 350 - 1750 nm
  • High wavelength resolution: 0.05 nm (full wavelength range)
  • High wavelength accuracy: ±0.05 nm (633/1523 nm), ±0.2 nm (350 - 1750 nm)
  • Close-in dynamic range: 60 dB (λPK ±1 nm)
  • Sensitivity: -80 dBm (900 - 1600 nm), -70 dBm (400 - 900 nm)

Wavelength Resolution Settings
Eight wavelength resolution settings (0.05 - 10 nm) enable users to select the best value according to the device/system under test.

Measurable Level Range
The wide measurable level range (-80 to +20 dBm) measures both high power and low power sources used in different fields of application.

Wavelength Accuracy
The ±0.05 nm wavelength accuracy can be maintained via calibration using either the built-in reference light source or an external light source like a HeNe laser and Argon.

Fast Measurement
The OSA performs a 100 nm span in only 0.5 seconds (sensitivity set to NORM_AUTO).

200,001 Samples
Capable of a large number of samples, one sweep measures a wider wavelength range at high resolution.

Large Touchscreen LCD
A responsive high-resolution 10.4-inch multi-touch capacitive touchscreen makes device operation even simpler and more intuitive. Change measurement conditions, perform analysis, and change the optical spectrum view as if you were operating a tablet device. In the optical spectrum view, the waveform view can be zoomed or shifted by a simple tap and drag.

LCD Touchscreen | AQ6374E OSA | Yokogawa Test&Measurement

Trace Calculation and Analysis
Trace features included seven individual traces, simultaneous multi-trace display, calculation between traces (subtraction between traces), and a Max/Min Hold function.

USB Ports
Four USB ports facilitate the use of external devices such as a mouse, keyboard, external hard drive, or memory stick.

AQ6374 USB Port

Thumbnail File Preview
The thumbnail enables easier location of files in both internal and external storage.

Thumbnail File Preview | AQ6374E OSA | Yokogawa Test&Measurement

All-at-Once Trace Filing
This time-saving feature allows users to save all seven traces in one CSV file at once, which can then be easily manipulated with PC application software.

Sixteen Data Analysis Functions
 Multiple data analysis functions are available that cover many popular applications:

  • WDM (OSNR)
  • Optical Fiber Amplifier
  • DFB-LD
  • FP-LD (VCSEL)
  • LED
  • Spectral Width
  • Notch Width
  • SMSR
  • PMD
  • Optical Power
  • Color
  • Go/No-Go Judgement
  • Optical Filter (PK, BTM,
    WDM-PK, WDM-BTM)

Seven Individual Traces
Users can directly select the trace using a mouse via simultaneous multi-trace display and employ Max/Min hold and calculation (subtraction) between traces

Purge

AQ6374 Purge Feature

Due to its high resolution and sensitivity the AQ6374E OSA can detect the presence of water molecules in the air. If water vapor is detected in the upper Near-IR wavelength region, it can overlap with or mask spectral characteristics of the device under test for that particular region.

By continuously supplying a pure purge gas such as nitrogen to the monochromator through back panel ports, the AQ6374E can reduce the influence of water vapor absorptions for more reliable and accurate measurements.

Smoothing
Reduces the noise on the measured spectrum.

Built-In Cut Filter
The built-in cut filter addresses instances when the monochromator generates high order diffracted light that appears at wavelengths equal to the integral multiple of input wavelengths.

Built-In Calibration Source
Ambient temperature change, vibrations, and shock can have an impact on an OSA's measurement accuracy. To ensure consistently precise measurements, the AQ6374E OSA is equipped with a built-in calibration source. The calibration process is fully automatic and takes only two minutes to complete and includes optical alignment, which automatically aligns the optical path in the monochromator to assure level accuracy, and wavelength calibration, which automatically calibrates the OSA with the reference source to ensure wavelength accuracy.

AQ6374 Calibration

Advanced Marker
Adds markers to obtain power spectral density and integrated power of a designated spectrum for easier acquisition of a signal's OSNR value, modulated or not, directly from its spectrum.

Built-In Macro Programming
Create automated test systems to perform automatic measurements and control external equipment through a remote interface. GP-IB, and Ethernet ports are available for remotel control via PC and to transfer standard SCPI-compatible or proprietary AQ6317-compatible commands. LabVIEW® drivers are also available.

AQ6370 Viewer
AQ6370 Viewer software replicates the OSA's screen on a PC and allows for real-time remote control and operation of the OSA and lets users to display, analyze, and transfer acquired data onto a remote PC. This enables professionals like Production Managers to operate the instrument and collect measurement results from their office without physically going to the production line and Service Engineers to help customers or colleagues by remotely setting the instrument and tuning it on the device/system they want to test.

AQ6374 AQViewer

 

Active Component Test

Characterization of Laser Sources
Various light sources that emit in the visible light to mid-infrared wavelength region (like DFB-LD, FP-LD, and VCSEL) mount into a variety of devices and systems for a number of applications. Examples include telecommunications (glass fiber or plastic fiber), industrial (barcode scanners, LiDAR surface scanners), and consumer electronics (audio output of Hi-Fi audio systems, laser printers, computer mice).

Characterization of Sources in Laser Absorption Spectroscopy
The measurement technique laser absorption spectroscopy detects and measures the concentration of gases in the air in both open and closed environments. The lasers used require excellent single-mode operation performance, which directly determines the limits of detection. DFB-LD and VCSEL lasers require certain parameters to evaluate their performance. Side-mode suppression ratio (amplitude difference between main mode and side mode) and the spontaneous emission level (magnitude of background noise light) can be quickly and accurately measured by the AQ6374E.

Characterization of Supercontinuum Light Sources
Supercontinuum light is generated by promoting highly nonlinear optical processes in special materials (e.g., photonic crystal fiber) by pumping them with a mode-locked pulsed laser (typically a femtosecond Ti: Sapphire laser). Supercontinuum light, described as "broad as a lamp, bright as a laser," matches characteristics of incandescent and fluorescent lamps (a very broad spectrum) with characteristics of lasers (high spatial coherence and very high brightness). This enables optimum coupling to a fiber and outstanding single-mode beam quality. Supercontinuum light sources are applicable across a diverse range of fields including optical coherence tomography, frequency metrology, fluorescence lifetime imaging, optical communications, gas sensing, and many others. The AQ6370 Series of optical spectrum analyzers is ideal for testing and characterizing supercontinuum light sources during pre- and post-production quality checks.

Measurement Example of Supercontinuum Light Sources (AQ6374E OSA + AQ6375E OSA) | Yokogawa Test&Measurement
Measurement Example of Supercontinuum Light Sources (AQ6374E + AQ6375E)
 

Passive Component Test

Visible LED
Supporting the large core fiber input, the AQ6373E OSA and AQ6374E OSA efficiently attain visible LED light from lighting, signage, sensing, and other applications and measures its spectrum.The built-in Color Analysis function automatically evaluates the dominant wavelength and the chromatic coordinates of the source.

Example of Color Analysis with the AQ6374E OSA | Yokogawa Test&Measurement
Example of Color Analysis with the AQ6374E

With a broadband light source like ASE, SLD, or SC, the OSA performs an evaluation of passive devices such as WDM filters and FBG. The superb optical characteristics of the AQ6370 OSA Series enables higher resolution and wider dynamic range measurements. The built-in optical filter analysis function simultaneously reports peak/bottom wavelength, level, crosstalk, and ripple width.

AQ6374 Passive Component Test

Loss Wavelength Characterization of Optical Fibers
Loss values of optical fibers are different depending on wavelengths of propagating optical signals. These differences are caused by the absorption by optical fibers and the effect of Rayleigh scattering. Loss values vary by the materials and types of fibers. With a quartz single-mode fiber, a loss around 1.55 μm is about 0.2 dB/km (the smallest), and around 1.4 μm a large loss occurs due to water ions (OH). The loss wavelength characterization of this type of optical fiber requires measuring a wide range of wavelengths. With a white light source, the AQ6374E efficiently characterizes the loss wavelength measuring a wide range of wavelengths.

Measurement Example of Wavelength Loss Characterization with AQ6374E OSA | Yokogawa Test&Measurement
Measurement Example of Wavelength Loss Characterization with AQ6374E

Characterization of Fiber Bragg Gratings
Fiber Bragg grating (FBG) is a type of distributed Bragg reflector constructed in a short segment of optical fiber that reflects particular wavelengths of light and transmits all the others. This is achieved by creating a periodic variation in the refractive index of the fiber core, which generates a wavelength-specific dielectric mirror. FBG can be used as an inline optical filter to block certain wavelengths or as a wavelength-specific reflector. The primary application of FBG is in optical communications systems, as they are specifically used as notch filters and in optical multiplexers and demultiplexers with an optical circulator or optical add-drop multiplexer (OADM). FBG tuned on the 2-3 μm region can be used as direct sensing elements for strain and temperature in instrumentation applications (like seismology) and in pressure sensors for extremely harsh environments. To characterize FBGs, the high wavelength resolution and high dynamic range of the AQ6370 Series are indispensable.

AQ6374 Fiber Bragg Grating

Gas Detection and Concentration Measurements
Used together with a broadband light source like supercontinuum (SC) or super luminescent diode (SLD), the AQ6370 Series shows the absorption spectrum of the gas mixture under test.

Hydrogen Cyanide H13C14N Absorption Spectrum Measurement with AQ6375E OSA | Yokogawa Test&Measurement
Hydrogen Cyanide H13C14N absorption spectrum measurement with AQ6375E

AQ9441 Connector Adapter

Suffix Descriptions
-FC FC type
-SC SC type

AQ9447 Connector Adapter

  • AQ9447 Connector Adapters
  • For optical input port
  • AQ6370 Series Optical Spectrum Analyzer Accessories

Numerical Aperture Conversion Fiber

By connecting a GI 50 or GI 62.5 optical fiber with a relatively large NA to the NA Conversion Fiber, the NA Conversion Fiber reduces the loss that occurs at the input and improves the measurement dynamic range during passive device measurements and the stability of optical level measurements during active device measurements.

751535-E5 Rack mounting kit

RACK MOUNTING KIT For an EIA-compliant Single-housing Rack

Overview:

This application note introduces free space light measurement jigs for measuring the emission spectrum of a light source that propagates in free space or the optical transmission spectrum of an optical filter. It describes four types of jigs for light sources and one type for filters.

Overview:

Optimizing bias voltage is essential for efficient optical modulator operation, maintenance of signal quality, and meeting performance specifications required for a designated application. Proper biasing helps achieve desired modulation effects, reduces distortion, and enhances overall reliability of optical communication systems.

Overview:

To accurately measure pulsed light using an optical spectrum analyzer (OSA), it is necessary to understand the characteristics of the OSA and select the appropriate measurement method and settings.

Overview:

Overview of optical communications via optical fibers including: signal conversion, optical fiber benefits, techniques like wavelength division multiplexing (WDM) for increased capacity, key components like optical amplifiers and spectrum analyzers for maintaining transmission quality.

Overview:

OSA Macro Program Function

The OSA Macro Program Function enables automated measurement by creating programs for entry of measurement conditions and other tasks. Users can program a sequence of measurement procedures from entry of measurement conditions (e.g., wavelength sweep width, setting resolution) to analyses, data saving, output, and others and eliminates redundant procedures on the production line. The function acts as a controller of other connected devices through the LAN or RS232C port and allows users to build an automatic measuring system without using an external PC and input measurement conditions or output measured results while programs are running.

Product Overviews

Looking for more information on our people, technology and solutions?


연락처

Precision Making

Top