The WT2010/WT2030 models offer advanced specifications and a wide variety of features.
The WT2010/WT2030 offers variable attenuator filtering capability and an excellent combination of features.
For the WT2000 series, we installed a high performance DSP and also developed a "variable attenuation type filter method" as same as 2531 to realize multiple items simultaneous measurement and high speed response which are required for electric power measurement. This filtering method enables the attenuation constant to be varied for each sampling. Compared to the conventional analog filter it has various merits including the following: (1) it has low ripple and fast response, (2) it prevents the number of calculation processing operations of the DSP from increasing, and does not significantly reduce the sampling rate, and (3) there is no need to synchronize it with the interval of the input signal. As a result, the measurement values are unaffected even if the frequency changes or a low frequency waveform is superimposed on the input signal. This method realizes a high response of 36 items of data/250 ms.
PWM type inverter equipment which is very widely used generates a voltage waveform by switching the frequency conversion circuit, hence the output contains a lot of noise. To ensure accuracy when measuring such equipment, it is important that the measuring instrument have high noise immunity. In the design of the WT2000 series, care was taken to minimize the effect of common mode noise, power line noise and pulse noise, thus ensuring highly accurate and stable measurement.
The integration method used in the WT2000 series enables the instrument to continuously acquire data by sampling the input signal at a high rate of about 110 kHz. As a result, the instrument can measure abrupt changes in input value, which was difficult to realize with conventional measuring instruments, thus enabling integrated values to be measured with very little loss of data. (There is virtually no delay or pause period due to the response of the filter.) With YOKOGAWA's conventional models, the resolution of the displayed value resulting from an integration operation is fixed by the maximum integration time, hence for short period integration, the bottom digit was not displayed and the resolution was insufficient. The WT 2000 series uses an "auto resolution method" in which the display resolution automatically changes along with the lapse of the integration time, ensuring the maximum resolution even for short period measurement.
An example of frequency vs. power accuracy
The power factor error as percent of reading vs. power factor
An example of linearity of power valuer
Model | Description |
---|---|
253101 | WT2010/WT2030 Single Phase Model |
253102 | WT2010/WT2030 3-phase, 3-wire model |
253103 | WT2010/WT2030 3-phase, 4-wire model |
Rated at 300 V. Attaches to the 758917 test leads. Sold in pairs.
Screw-fastened adapters. Two adapters in a set. 1.5 mm Allen Wrench.
For conversion between BNC and female banana plug
Applicable for DL750/DL750P, SL1000 & SL1400.
For connection the external input of the WT3000 to the current sensor.
Length: 50cm
The objective of this paper is to show the close relationship between efficiency and power quality, and provide education on the causes of power quality, types of power quality issues, and provide guidance on measurement considerations.
Please download the attached PDF file for a list of pinouts for various communication cables.
Yes, it is possible to alter the standard model WE7000. The following is a list of range standard special order specifications and correspond models. Current Range 1/10 A Model: WT1010, WT1030, WT1030M, WT2010, ...
The WT1000/WT2000 series instrument uses a BNC connector for the external shunt input terminal. The output terminal of the 751550 Clamp Probe is a banana plug. Please use the 366921 Banana-to-BNC Conversion Adapter to ...
Send the appropriate command as shown below to your instrument, then read in all the data that is returned. PZ4000: "NUMERIC:NORMAL:VALUE?" WT1600: "NUMERIC:NORMAL:VALUE?" WT100/200 series ...
Send the "OFDO" command.This command turns all items for output OFF. Therefore no items will be output if you send the "OD" command. Send the "OF1,1" command to the measuring instrument. This command turns the voltage ...
To change the voltage range on element 1 to the 30 V range, send the "RV1,4" command to the measuring instrument. To change the current range on element 1 to the 1 A range, send the "RA1,5" command to the measuring ...
You can determine whether data was updated by performing a serial poll and referencing the status byte.Bit 0 of the status byte (D101) changes to 1 when data is updated. When bit 0 changes to 1, bit 6 (D107) also ...
You can use the "STATUS:ESSR?" command to access the extended event register and determine whether the data was updated. You can judge the data update status by referencing bit 0 (UPD) of this register. However to do ...
To change the voltage range on element 1 to 30 V, send the "CONFIGURE:VOLTAGE:RANGE:ELEMENT1 30V" command to the measuring instrument.To change the current range on element 1 to the 1 A range, send the ...
The waveform may actually not be a pure sine wave. Even though a 50/60 Hz sine wave is expected, the following factors may be involved: The waveform is slightly distorted (harmonic components are mixed in) Small ...
Check for differences in the specifications or features of the instruments. For values that do not match when inputting a 50/60 sine wave Check whether the value is within the specifications (error) of each power ...
The measurement intervals of the measured I/O data must overlap exactly. Check the sync source setting. For example, route the input to a three-phase device under measurement to input elements 1-3 on the power meter, ...
Check for differences in the specifications or features of the instruments. For values that do not match when inputting a 50/60 sine wave Check whether the value is within the specifications (error) of each power ...
In the three-phase three-wire, or 3V3A wiring scheme, the phase angle of voltage and current input to each input differs from that of the actual load because it is the line to line voltage that is measured. In ...
The peak value and crest factor may be unstable if they have not been captured accurately. If the peak value is not stable, neither will the crest factor be stable. The cause is the difficulty in capturing the narrow ...
The difference in measurement values can be attributed to the difference in calculation methods for normal mode and harmonic mode. The voltage, current, and power in normal mode are displayed as the total of the ...
The following may be causing the problem. 5V may have occurred during rating. Check the range setting again. DA output error can affect the values when the input is smaller than the rating. Have you checked the error ...
Check the Synch Source and Frequency Filter settings When a single-phase signal being measured fluctuates around power factor of 1.Slight fluctuations in the measured values of voltage, current, and power can cause a ...
The value depends on the model of the power analyzer. For Precision Power Analyzer WT1000, WT2000, WT100, and WT200, it is fixed to the fundamental wave. For power analyzers with 7 segments LED, the relative harmonic content is fixed to the ...
The Precision Power Analyzer WT3000 D/A output terminal is electrically isolated from the case. For all other models, the D/A output terminal is connected to the case.
In a research paper published on IEEE Xplore, Electric Power Research Institute (EPRI) researchers use a Yokogawa Test&Measurement Advanced Digital Power Meter to consistently and accurately measure computer power supply dc output/input voltage, current, power, and power factor.