What is the DC Accuracy When the Waveform Position has Been Changed?

Question:
I would like to confirm DC Precision when changing the position setting on DL1600. According to the specification of vertical (voltage) axis accuracy, in the case that voltage axis is set to 0.5 V/div:
• DC Precision:  ±(1.5% of 8 div + offset voltage precision)
• Offset Voltage Precision:   ±(1% of set value + 2 mV)

If DC offset voltage is set to 2.0 V, then the DC precision is ±(1.5% of  8*0.5V + 1% of 2V + 2 mV) = ±82 mV.
However, there is no description about "position" in this equation. What is the equation when I change the position setting?

For example, what is the DC precision when the offset is set to 0 V and the position is set to -4 div?

If DC offset equals 0V and the position is changed, it is necessary to calculate the DC precision supposing the DC offset voltage is set as the same as the voltage corresponding to position changing.

In the previous example, since the voltage scale is set to 0.5 V/div, -4 div corresponds to 2V. So the DC precision in this case is the same as the offset voltage is set to 2 V. In conclusion, the DC precision will be:
±(1.5% of  8*0.5V + 1% of 4*0.5V + 2 mV）= ±(1.5% of  8*0.5V + 1% of 2V + 2 mV）
= ±82 mV

Related Products & Solutions

DL7440/DL7480 Digital Oscilloscopes

8-channel 500 MHz oscilloscope with 16 logic inputs, for applications where four channels aren't enough.  Support for eight analog channels, 16 bits with 250MHz logic bandwidth, 16MP of recording memory, power analysis, serial bus analysis, and a broad selection of voltage and current probes.

DL9000 DSO Series

500MHz, 1.0GHz, and 1.5GHz DSOs for debug and high performance applications. 10th
generation oscilloscope from Yokogawa with industry leading 2.5 million wfms/sec and lowest dead time. Winner of Test & Measurement World's "Best in Test" award.

DLM2000 Mixed Signal Oscilloscopes

200, 350, and 500MHz mixed-signal oscilloscopes for every engineer. Best-in-class performance in usability, acquisition, analysis, and display—all at a price you can digest. Options include serial bus, vehicle bus, and power supply analysis functions.

DLM6000 MSO & DSO Series

500MHz, 1.0GHz, and 1.5GHz DSO and MSO models for debug, waveform characterization, bench top, or automated test applications. 4 channel models with 16 or 32 logic inputs. 12th generation oscilloscope with ergonomic physical and on-screen improvements.

SL1000 High Channel Count ScopeCorder

A headless ScopeCorder system capable of connecting multiple chassis into one PC-based system.

Data Acquisition (DAQ)

Yokogawa data acquisition systems give you the most flexibility and power to measure, display, store, and even actuate any number of physical or electrical phenomena.

High Speed Data Acquisition

Yokogawa high speed data acquisition systems deliver industry leading isolation, bit resolution, sampling rate, and memory depth, with independent channel hardware and easy to use software.

Mixed Signal Oscilloscopes

A mixed signal oscilloscope is an instrument enabling the simultaneous, time correlated observations and analysis of analog with digital (logic) signals, to establish causal relationships between the various areas of a device's electronics. They are purpose-built tools for troubleshooting electrical anomalies, measuring parametric values, and monitoring cause and effect relationships between signals.

Oscilloscopes

World-class digital oscilloscopes from Yokogawa: The digital oscilloscopes have high-speed sampling and a wide range of bandwidths that can be utilized for design and development of electronic devices. The ScopeCorders have the advantages of both a digital oscilloscope and a multi-channel data recorder.

ScopeCorders

A ScopeCorder is an instrument combining a mixed signal oscilloscope and portable data acquisition recorder into a modular platform designed to capture both high-speed transients and low-speed trends. Yokogawa’s ScopeCorder product family provides flexible and high-performance multi-channel test instruments by combining a variety of signal conditioning input modules, onboard calculations, and deep data acquisition storage into an off-the-shelf data acquisition solution.

Top