MWIR WAVELENGTH with internal gas purge and cut filter
The AQ6376E is the latest version of our bench-top optical spectrum analyzer extending the wavelength coverage well beyond the NIR range of our previous models into the MWIR region from 1500 to 3400 nm.
Popular applications include the detection of gases such as carbon oxides (COx), nitrogen oxides (NOx), and hydrocarbon gas (CxHy) for environmental studies.
Similar to the long wavelength model, it offers the added benefits of gas purging input ports / output ports, a built-in cut filter for high order diffracted light, and a novel double speed mode which increases the sweep speed up to 2 times compared to the standard sweep mode.
Key feature summary
Purge feature
Due to the high resolution and sensitivity of the AQ6376E, it can actually detect the presence of water molecules in the air. The water vapor is detected in the upper Near-IR wavelength region and could overlap with or mask the spectral characteristics of the actual device under test in that particular region.
By continuously supplying a pure purge gas such as nitrogen to the monochromator through the ports on the back panel, the AQ6376E can reduce the influence of water vapor absorptions and provide more reliable and accurate measurements than ever before.
Built-in cut filter for high order diffracted light
Due to the diffractive technology used, the monochromator in some circumstances could generate high order diffracted light, which appears at wavelengths equal to the integral multiple of input wavelengths.
By cutting incoming light below 1500 nm with the built-in filter, the AQ6376E drastically reduces the influence of high order diffracted light on the measurement. Thus, the measured data are always reliable and replicate the real signal under test.
Double speed mode
Increases the sweep speed up to 2 times compared to the standard sweep mode, with only a 2 dB penalty to the standard sensitivity value.
The AQ6376E covers not only the wavelength span used in communications, but also the 3µm region which is used for environmental sensing, medical, biology and industrial applications.
The AQ6376E can measure optical power from +13dBm down to -65dBm thanks to its high-dynamic and very low noise components and circuits used for photo detection. This enables precise measurements of both high power and low power sources.
Measurement sensitivity can be chosen among 7 values according to the measurement speed required by the specific test to be performed.
The AQ6376E uses a double-pass monochromator structure to achieve high wavelength resolution (0.1 nm) and wide close-in dynamic range (55 dB). Thus, closely allocated signals and noise can be separately measured.
GREATER EFFICIENCY
High Speed Sweep
With a proprietary sweep technique the AQ6376E achieves a much faster sweep speed than conventional measurement systems, which use a monochromator. Max. sweep time is only 0.5 sec. for 100 nm span.
Fast command processing and data transfer
Applying a fast microprocessor, the AQ6376E achieves very fast command processing speed and Ethernet interface provides up to 100 times faster data transfer speed than GP-IB.
The AQ6376E uses a free-space optical input structure, i.e. no fiber is mounted inside the instrument.
This smart solution is:
The appplication mode (APP) transforms an OSA into a versatile machine dedicated to a device under test (DUT). APP mode provides a DUT-specific user interface that navigates the user from configuration settings to test result output without worrying with other OSA settings. The AQ6376E comes pre-installed with several standard applications including DFB-LD testing, FP-LD testing and SC light source testing. Additional optional applications are available for download from the Yokogawa Test&Measurement website.
The AQ6376E has been designed to increase productivity of R&D and Production personnel.
The software has pre-installed analysis functions for the most common optoelectronic (passive and active) devices. The automatic calculation of the major parameters of the device under test will contribute to its fast characterization.
Smoothing function
Reduces the noise on the measured spectrum.
You can display the spectrum width and center wavelength using the following 4 types of calculation:
Notch Width Measurement
With this function it is possible to measure pass bandwidth / notch width from the measured waveform of a filter with V-type or U-type wavelength characteristics.
Light Source Analysis
Light source parameters can be analyzed from the measured waveform of each type of light source among DFB-LD, FP-LD and LED.PMD Measurement
It is possible to measure the Polarization Mode Dispersion (PMD) of a DUT (such as an optical fiber) by using the instrument in combination with an Analyzer, Polarization Controller, Polarizer, and an Amplified Spontaneous Emission (ASE) light source, High-output LED light source, or other wideband light source.
Optical Amp Analysis
Gain and Noise figure measurements can be made on signal light waveforms going into optical amplifiers, as well as light leaving the optical amplifiers.
Optical Filter Characteristics Measurement
Optical filter characteristics can be measured from the measured waveforms of the light, from source, going into optical filters, as well as from the measured waveforms of light being output from optical filters. Analysis can be performed not only on optical filters with one mode, but also multimode filters.
Measurement of Level Fluctuations in Single-Wavelength Light
This function is used to measure changes over time in the level of a specific wavelength level. The sweep width is set to 0 nm, and measurement of the single-wavelength light is taken. The horizontal axis is the time axes. It is useful for purposes such as optical axis alignment when a light source is input to an optical fiber.
Analysis between Line Markers / in the Zoom Area
The instruments perform the analysis of the signal contained into boundaries selected by means of line markers or zoomed area.
REMOTE OPERATION
The AQ6376E is equipped with GP-IB and Ethernet (10/100Base-T) interfaces, which can be used for remote access and control from an external PC to build automated test systems.
COMPATIBLE WITH SCPI
The standard remote commands of the AQ6376E are compatible with SCPI, which is an ASCII text based standard code and format conforming to IEEE-488.2.
AQ6317 EMULATION MODE
The AQ6376E supports proprietary remote programming codes of Yokogawa's best selling AQ6317 series for users to easily upgrade from their current automated test environment.
With over four decades perfecting the user experience, the Precision Makers of Yokogawa Test&Measurement developed the AQ6376E with an easy-to-use front-panel design and intuitive operability.
The high-resolution, responsive 10.4-inch multi-touch capacitive touchscreen makes device operation simple and intuitive. Easily change the view and measurement conditions and perform analysis with just a touch. In the optical spectrum view, the waveform view can be zoomed or shifted by a simple tap and drag.
Operability is improved with the addition of frequently-used function keys on the front panel. These include sweep control (Auto/Single/Repeat/Stop), resolution, and sensitivity. The function keys can also be displayed as a pop-up on the screen.
Passive components (FBG)
In conjunction with a broadband light sources such as ASE, SLD, or Super Continuum (SC), the AQ6376E enables higher resolution and wider dynamic range measurements and performs evaluation of passive devices including FBG. In addition, the built-in optical filter analysis function simultaneously reports peak/bottom wavelength, level, crosstalk, and ripple width.
The AQ6376E has USB ports that are compatible with a USB storage device, mouse, and keyboard. The file feature allows users to save data and screenshots to internal memory or USB storage for use in creating test reports. By connecting a mouse or keyboard to the USB port, you can comfortably operate the AQ6376E as if you were operating a PC.
The standard LAN port allows convenient access to files stored in the internal memory and enables remote updates for firmware from a PC.
The AQ6376E is the right instrument to test & characterize
Moreover, its peculiar characteristics and high-level performance make the AQ6376E the ideal OSA to measure gas concentration in the air using Laser Absorption Spectroscopy.
Characterization of Fiber Bragg Gratings (FBGs)
A Fiber Bragg Grating (FBG) is a type of distributed Bragg reflector constructed in a short segment of optical fiber that reflects particular wavelengths of light and transmits all others. This is achieved by creating a periodic variation in the refractive index of the fiber core, which generates a wavelength specific dielectric mirror. An FBG can therefore be used as an inline optical filter to block certain wavelengths, or as a wavelength-specific reflector.
Fiber Bragg gratings can then be used also as direct sensing elements for strain and temperature, in fact the Bragg wavelength of the FBG can be tuned by strain and temperature change applied by a piezoelectric transducer. Specifically, fiber Bragg gratings are finding uses in instrumentation applications such as seismology, pressure sensors for extremely harsh environments, and as downhole sensors in oil and gas wells for measurement of the effects of external pressure, temperature, seismic vibrations and inline flow measurement.
Fiber Bragg gratings are created by "inscribing" or "writing" systematic (periodic or aperiodic) variation of refractive index into the core of a special type of optical fiber using an intense ultraviolet (UV) sources such as KrF or ArF excimer lasers.
However, the functional wavelength of FBG is not the writing wavelength, and for non-communication applications mentioned above (strain and temperature sensors) FBGs tuned on 2-3µm region are used. For testing such FBGs, the AQ6375E and/or AQ6376E are the ideal instruments depending on the wavelengths.
Characterization of Supercontinuum Light Sources
Supercontinuum light is generated by promoting highly nonlinear optical processes in special materials, e.g. photonic crystal fiber, by pumping them with a mode-locked pulsed laser (typically a femtosecond Ti:Sapphire laser).
Supercontinuum light can be best described as ‘broad as a lamp, bright as a laser', in fact it matches the characteristics of incandescent and fluorescent lamps - i.e. very broad spectrum - with the characteristics of lasers - i.e. high spatial coherence and very high brightness, which enables optimum coupling to a fiber and outstanding single-mode beam quality.
The Supercontinuum light sources are nowadays finding applications in a diverse range of fields, including optical coherence tomography, frequency metrology, fluorescence lifetime imaging, optical communications, gas sensing and many others.
Detecting the multi-wavelength optical pulses generated by a Supercontinuum light sourcewith AQ6376E.
AQ6376E, thanks to its premium performance, is the right instrument to tests and characterize Supercontinuum light sources during their production and after-production quality check processes.
Characterization of Lasers used in Medical applications
Specific LASERs emitting around 2µm are used nowadays as tools for endoscopic surgery, like Thulium laser used for surgical treatment of prostate cancer.
AQ6376E is the best instrument to test and characterize such kind of LASERs during their production and after-production quality check processes.
The global warming gases, called greenhouse gases, like CO2, SO2, NOX and CH4, has strong absorption lines in the 2 to 3 µm wavelength region. The presence and concentration of those gases in the atmosphere can be determined by measuring the optical absorption spectrum of the gas mixture under test.
Thanks to its Free Space Optical Input, the AQ6376E can also measure the absorption spectrum of an air column using the Sun as light source and transferring by a MultiMode fiber the light passed-through the mixture.
Cavity Ring-Down Spectroscopy applications (CRDS)
CRDS is a highly sensitive optical spectroscopic technique that enables measurement of absolute optical extinction by samples that scatter and absorb light. It has been widely used to study gaseous samples, which absorb light at specific wavelengths, and in turn to determine mole fractions down to the parts per trillion level. The technique is also known as cavity ring-down laser absorption spectroscopy (CRLAS).
A typical CRDS setup consists of a laser that is used to illuminate a high-finesse optical cavity, which in its simplest form consists of two highly reflective mirrors. When the laser is in resonance with a cavity mode, intensity builds up in the cavity due to constructive interference. The laser is then turned off in order to allow the measurement of the exponentially decaying light intensity leaking from the cavity. During this decay, light is reflected back and forth thousands of times between the mirrors giving an effective path length for the extinction on the order of a few kilometers.
If something that absorbs light is placed in the cavity, the amount of light decreases faster-it makes fewer bounces before it is all gone. A CRDS setup measures how long it takes for the light to decay to 1/e of its initial intensity, and this "ringdown time" can be used to calculate the concentration of the absorbing substance in the gas mixture in the cavity.
Cavity ring down spectroscopy is a form of laser absorption spectroscopy. In CRDS, a laser pulse is trapped in a highly reflective (typically R > 99.9%) detection cavity. The intensity of the trapped pulse will decrease by a fixed percentage during each round trip within the cell due to both absorption and scattering by the medium within the cell and reflectivity losses.
One of the major applications of CRDS is breath analysis:
The following graph shows the spectra of the biomarker hydrogen cyanide (HCN) along with water vapor (H2O) at atmospheric pressure and at concentrations typically found in exhaled human breath:
The AQ6376E has the right characteristics to be an effective instrument to measure the output of CRDS systems.
A complete suite of connection interfaces
For the first time, the AQ6376E is now equipped with Gas Purging Input and Output ports for the first time along with a suite of electrical interfaces (GP-IB,, USB, RJ-45 Ethernet, SVGA video output, analog (voltage) output, trigger input & output) which allow the user to easily operate it locally in the lab as well as remotely.
Note: USB ports can't be used for instrument's remote control. For this purpose the instrument has an Ethernet RJ45 port on its back panel.
By connecting a GI 50 or GI 62.5 optical fiber with a relatively large NA to the NA Conversion Fiber, the NA Conversion Fiber reduces the loss that occurs at the input and improves the measurement dynamic range during passive device measurements and the stability of optical level measurements during active device measurements.
The OSA Macro Program Function enables automated measurement by creating programs for entry of measurement conditions and other tasks. Users can program a sequence of measurement procedures from entry of measurement conditions (e.g., wavelength sweep width, setting resolution) to analyses, data saving, output, and others and eliminates redundant procedures on the production line. The function acts as a controller of other connected devices through the LAN or RS232C port and allows users to build an automatic measuring system without using an external PC and input measurement conditions or output measured results while programs are running.
To accurately measure pulsed light using an optical spectrum analyzer (OSA), it is necessary to understand the characteristics of the OSA and select the appropriate measurement method and settings.
In this poster session research from The European Conference on Lasers and Electro-Optics 2017, researchers from Texas A&M University, Texas A&M University at Qatar, and Florida A&M University use a Yokogawa Test&Measurement AQ6376 Optical Spectrum Analyzer to detect methane in the air.
Mastering the fundamentals of optical wavelength measurements and having a solid understanding of measurement principles for optical sources and devices is key to measuring with confidence. This webinar provides a thorough review of these foundational elements and concepts as well as:
There are countless technologies available for optical communications devices and systems validation. With so many specifics to take into consideration, it's not always easy for an engineer to determine the best networking and fiber optic measurement solution to address their measurement needs.
Key discussions in this on-demand webinar include: