Power Measurement Application Software

Yokogawa's Power Analyzer software manages numeric, waveform, and harmonic data measurements. It enables data logging and instrument configuration from your computer.

  • WTViewerE software enables PC connectivity for Yokogawa power analyzers such as the WT5000, WT3000E/ WT3000, WT1800E/ WT1800 , WT500 and WT300E/WT300 through Ethernet, USB, GPIB or RS232. This connectivity allows users to easily control, monitor, collect, analyze, and save measurements remotely.

  • The WTViewerFreePlus software captures measured numeric values, harmonic values, and waveform data. Users can view and save data on a PC using USB, GPIB, RS-232, or Ethernet.

  • The WTViewerEfree is free software for power analyzer models that include WT series*. The software simplifies instrument configuration and gathering of measurements.

    *WT5000/ WT3000E/ WT3000/ WT1800E/ WT1800/ WT500/ WT300E/ WT300

  • The WTViewer is an application software tool that reads numeric, waveform, and harmonic data measured with the WT3000E /WT3000 /WT1800E /WT1800 /WT500 Digital Power Analyzer.

  • The PowerViewerPlus (part #760811) enables PC-based remote control, acquisition and analysis of high-frequency and transient power signals from a PX8000 Precision Power Scope.

  • For use with WT5000, WT3000, WT3000E, WT1800, WT210, WT310 and WT310E. Conforms to IEC62301 Ed2.0(2011) and EN 50564:2011 testing methods.

  • 761922 Harmonic/Flicker Measurement Software

    IEC61000-3-2, IEC61000-3-12, IEC61000-3-3, IEC61000-3-11 Harmonic and Flicker Compliance Software

Overview:

We have added a harmonics current/flicker measuring function to the WT3000 Precision Power Analyzer with world-leading accuracy of power measurement. We have also created PC software for harmonics current/flicker measurement. This PC software and the WT3000 comply with the IEC61000- 3-2 harmonics current standard and IEC61000-3-3 voltage fluctuation/flicker standard, thus enabling the electrical power, harmonics current and flicker of electrical equipment to be measured precisely with a single unit. This paper outlines the harmonics current standard and voltage change/flicker standard, along with the measurement principle and PC-based software of the WT3000.

Overview:

Improving and optimizing electric motor performance and efficiency depends on understanding how electric current is measured.

Overview:

Following Yokogawa’s launch of the complete standby power measurement consumption package, we are now diving into the background details on the standards and highlight the growing concern. This article shows how various standardisation bodies are trying to tackle the issues around it and manufacturers are beginning to respond.

Media Publication
2.3 MB
Overview:

Many industry trends are conspiring to make power analysis an important consideration for designers. The New Electronics editor takes a look at this expanding arena by talking to Hafeez Najumudeen of Yokogawa.

Media Publication
1.5 MB
Overview:

The Yokogawa WT210 power analyzer was used by "The Tech Report - PC Hardware Explored" to measure power consumption under load for two articles (Intel's Xeon 5600 processors and Nvidia GeForce GTX 480 and 470 graphics processors).  The WT210 is a high accuracy power meter that meets with SPEC's approval and integrates seamlessly with the SPECpower_ssj power measurement components.

Overview:

After a disastrous 2009, the large publicly held test companies enjoyed booming business in 2010.

Overview:
Can Xviewer.exe be run as multiple instance?   No - not at this time. Xviewer can not control two or more DL850 chassis. Xviewer can not connect to two or more instruments at the same time. Two or more Xviewer ...
Overview:
The following softwares have been tested for Windows 7 compatibility. WTViewer Xviewer SL1000 Acquisition Software USB Instrument Drivers for all USB supported instruments TMCTL Library Files for programming with VB, ...
Overview:
When using WTViewerFree to automatically save data in CSV format, a lack of memory may occur due to increasing load on anti-virus software such as Virus Buster. As the data save time becomes longer, the CSV file will ...
Overview:

To programmatically read all 500 harmonic orders measurement values, please use the ":NUMERIC:LIST" command set. The maximum number of items for the :NUMERIC:LIST:VALUE? command is 64.  However, 1 LIST ITEM can ...

Overview:
It is possible to lock out all the keys, including LOCAL, on the WT210/WT230 using a GPIB specific or controller specific command.For the GPIB controller from National Instruments, the command is called LLO or Local ...
Overview:
If you want to know the condition of the "Check Range" LED indicator for voltage and current, you will need to read three bits in the Extended Event Register. "Bit-6", "Bit-7", and "Bit-8" needs to be read to know the ...
Overview:
Although WTViewer is not officially supported under the Linux environment, users have successfully done so using WINE (flavor of Linux) via RS232. For connectivity to WT210/WT230, WTViewer requires that the meter be set ...
Overview:
The IEC Harmonic analysis on the DL/DLM series oscilloscopes provides a rough analysis and estimation for harmonic testing. The scope will perform an FFT on the current waveform and can be used to measure the general ...
Overview:
To use USB interface on the WT500 and WT1800 from NI LabVIEW environment, you will need to use the USB driver from National Instruments. This USB driver is usually installed when you install NI-VISA and is called the ...
Overview:
There are several items you will need to check and verify to solve this issue. Verify the GP-IB connectionSome instruments have a D/A output connector located next to the GP-IB connector. There have been some ...
Overview:
You can use the Power Viewer (Model 253734) software. However if you only need to view waveforms, we recommend you use the Waveform Viewer (Model 700919, version 1.23 or later) software. The trial version of the Power ...
Overview:

When making a WT230 RS232C connection using GateWT, please verify the following RS232C communication settings on the instrument: Mode = 488.2 Hand = 0 For = 0 Baud Rate = 9600 Terminator Cr+Lf Even though you can run ...

Overview:
You can read the average active power during continuous integration mode (just before the integral resets) for the WT230, by monitoring the status of the ITG or ITM bits of the extended event register.   Bit 1 ITG is ...
Overview:
Yes, you can use DL Term with the WT1800 using an Ethernet (VXI-11) or USB connection.
Overview:
For the WT1600, to view the harmonic data in the Bar Graph window of WTViewer, you have to select all the harmonic orders in the Numeric window. WTViewer's Bar Graph window display follows the harmonic items activated ...
Overview:
The WTViewer Save Setting feature will only save the setting information of the WTViewer. The Save Setting feature will NOT save the setting information of the instrument. The saved file for the WT500, WT1800 or ...
Overview:
It is possible to lock out all the keys, including LOCAL, on the WT210/WT230 using a GPIB specific or controller specific command.For the GPIB controller from National Instruments, the command is called LLO or Local ...
Overview:
If you want to know the condition of the "Check Range" LED indicator for voltage and current, you will need to read three bits in the Extended Event Register. "Bit-6", "Bit-7", and "Bit-8" needs to be read to know the ...
Overview:
You can use the Power Viewer (Model 253734) software. However if you only need to view waveforms, we recommend you use the Waveform Viewer (Model 700919, version 1.23 or later) software. The trial version of the Power ...
Overview:

To programmatically read all 500 harmonic orders measurement values, please use the ":NUMERIC:LIST" command set. The maximum number of items for the :NUMERIC:LIST:VALUE? command is 64.  However, 1 LIST ITEM can ...

Overview:
To use USB interface on the WT500 and WT1800 from NI LabVIEW environment, you will need to use the USB driver from National Instruments. This USB driver is usually installed when you install NI-VISA and is called the ...
Overview:
Although WTViewer is not officially supported under the Linux environment, users have successfully done so using WINE (flavor of Linux) via RS232. For connectivity to WT210/WT230, WTViewer requires that the meter be set ...
Overview:
Yes, you can use DL Term with the WT1800 using an Ethernet (VXI-11) or USB connection.
Overview:
The IEC Harmonic analysis on the DL/DLM series oscilloscopes provides a rough analysis and estimation for harmonic testing. The scope will perform an FFT on the current waveform and can be used to measure the general ...
Overview:
There are several items you will need to check and verify to solve this issue. Verify the GP-IB connectionSome instruments have a D/A output connector located next to the GP-IB connector. There have been some ...
Overview:
The WTViewer Save Setting feature will only save the setting information of the WTViewer. The Save Setting feature will NOT save the setting information of the instrument. The saved file for the WT500, WT1800 or ...
Overview:

When making a WT230 RS232C connection using GateWT, please verify the following RS232C communication settings on the instrument: Mode = 488.2 Hand = 0 For = 0 Baud Rate = 9600 Terminator Cr+Lf Even though you can run ...

Overview:
For the WT1600, to view the harmonic data in the Bar Graph window of WTViewer, you have to select all the harmonic orders in the Numeric window. WTViewer's Bar Graph window display follows the harmonic items activated ...
Overview:
You can read the average active power during continuous integration mode (just before the integral resets) for the WT230, by monitoring the status of the ITG or ITM bits of the extended event register.   Bit 1 ITG is ...
Technical Article
Edition 1
Overview:

In power measurement, power analyzer accuracy is one of the most important specifications to consider. It is easy to understand the importance of accuracy but to respect its role in power measurements, one must first understand error.

Accuracy is Error

Error is a measurement’s proximity to the true value, a measurement value accepted as standard. True values vary and can include government-mandated standards or manufacturers’ calibration standards. Accuracy is characterized by the amount of error present in the measurement- its proximity to the true value. The cause of error is either random, with no identifiable root cause, or systematic, introduced by components of the measurement system.

Systematic Errors

Systematic errors can categorized as either gross or measurement. Unknowingly created by a user, gross errors occur as a result of improperly configuring or analyzing the results of a measurement system. Engineers working with a power analyzer could cause a gross error by choosing an inappropriate line filter (see Figure 1). 

Figure 1:

Figure 1

Figure 1: Failing to turn on a required line filter could cause a gross error. In this example, the lack of a filter (top image) results in a signal that is difficult to synchronize

The second type of systematic error, measurement error, is introduced by the power instrument or system itself. Measurement errors can be caused by a lack of calibration, limited instrument accuracy, or measurements that have been altered by the measurement system. A shunt resistor used in a power analyzer will introduce a small measurement error due to the change in voltage it introduces to the system.

Once the error type and source are identified, the next step toward precision is to quantify the accuracy.

Accuracy Quantified

Defined previously, accuracy is the difference between a measured value and a true value. This difference can be expressed as an absolute error - an “error band” surrounding the true value. For example, the absolute error for a voltage measurement might be expressed as:

X [Volts] +/- Y [Volts], where X is the true value and Y is the absolute error.

Figure 2:

Figure 2

Figure 2: Error band surrounding a true value

Absolute error is useful because the total accuracy of a components system is equal to the sum of absolute errors. It is common to express absolute error levels in parts per million (PPM), which specifies the accuracy relative to one million.

1 PPM/V = an error band that is +/- 0.000001V

Relative Error

Power analyzer datasheets typically specify voltage, current, and power accuracies as relatively. Relative errors are simply percentages relative to the measurement and to the full-scale range of the input. For example, the WT3000E Power Analyzer specifies a power accuracy of 0.01% f reading +/- 0.03# of range at 60HZ.

Putting it all Together

Before the total system error can be calculated, it is necessary to convert the power analyzer’s relative error to an absolute error.

Total System Error = Σ(Absolute Errors)

Rather than manually converting relative error to absolute error, an uncertainty calculator can be utilized.

Uncertainty Calculator

Entering the following relative errors into the Uncertainty Calculator yields the corresponding absolute error value.

  • Voltage Reading & Range
  • Current Reading & Range
  • Frequency (kHz)
  • Power Factor (between 0 and 1)

Once entered, the Uncertainty Calculator provides the corresponding accuracies:

  • Voltage Uncertainty (Volts)
  • Current Uncertainty (Amps)
  • Power Uncertainty (Watts / Element)
  • Power Uncertainty for 3-phase, 3-wire configuration (Watts)
  • Power Uncertainty for 3-phase, 4-wire configuration (Watts)

Figures 3 and 4 demonstrate how to use Yokogawa’s Uncertainty Calculator. Remember- simply measuring power does not ensure accuracy or precision. If you struggle with accuracy uncertainty, try an Uncertainty Calculator today.

Figure 3:

Figure 3

Figure 3: Simply entering relative errors in the Yellow cells yields the corresponding absolute error values

Figure 4:

Figure 4

Figure 4 - After entering values in the yellow fields, locate the row that corresponds to the appropriate frequency range to read off the absolute uncertainties for voltage, current and power.

Industries:

Looking for more information on our people, technology and solutions?


Contact Us
Top