Yokogawa is a leader in the Aerospace and Homeland Security Industries. We take pride and honor in partnering with industry giants such as Airbus and Boeing. We strive to meet our customer's unique needs by developing highly precise measuring instruments that test to the prescribed industry standards and meet the rigorous demands of emerging technologies.
Measuring efficiency with high precision: simultaneous measurement of input and output
Observation of Inverter Switching Waveforms
What is an Oscilloscope? Oscilloscopes, also called digital storage oscilloscopes (DSOs) or mixed signal oscilloscopes (MSOs), are common test instruments used to display, analyze, and troubleshoot electrical or physical signals.
With increased focus on reducing energy consumption and compliance with efficiency standards, this app note provides an overview on the types of measurements needed for efficiency and power quality, and the instruments that take them.
What is a Power Analyzer? Power analyzers and power meters measure electrical power in devices that generate, transform, or consume electricity.
A ScopeCorder is a powerful portable data acquisition recorder that combines features of a multi-channel digital oscilloscope and a high-performance oscillographic recorder. As such, it can capture and analyze both short-term transient events and long-term trends for periods up to 200 days.
The accuracy of a measurement instrument varies with the range over which a reading is measured. Not all instrument manufacturers specify accuracy and ranges in the same manner. This article explores the impact of range definitions on measurement accuracy and how one can be mindful when comparing accuracy across instruments.
Using the OR trigger and Dual Capture, it is easy to trap and record failure conditions on electrical harnessses (wiring interconnects) over a long duration test.
Evaluation of Wireless Charging System for EV/PHV
Surge Waveform Recording & Power Monitoring
Measuring Conversion Efficiency of Power Conditioner
Evaluating Magnetic Components
Characteristics of Transient Response from Industrial Robots
Reference equipment for power calibration
Capture and recreate waveforms with a DLM2000 and FG420
One of the main responsibilities of engineers and technicians is data analysis, and this article will show how multi-touch technologies can be used to improve the performance of this and other related tasks.
In this application note you will learn when and how to use different methods to connect a current transformer to a power analyzer.
How can I capture data from motion sensors synchronized with other analog data? The Yokogawa ScopeCorder series of instruments feature input modules and functions to make this possible.
How to use built-in calculations to analyze motor rotor position of Brushless DC motors (BLDC) and Permanent Magnet Synchronous Machines (PMSM) and find the relative angle between the rotor and position sensors such as encoders or resolvers
RTCA Inc, (Radio Technical Commission for Aeronautics) Washington, DC, is a non-profit corporation that functions as a Federal Advisory Committee to the Federal Aviation Administration (FAA). Its recommendations serve as the basis for policy, program and regulatory decisions. Sub-committee SC-135 produces the RTCA/DO-160E document titled Environmental Conditions and Test Procedures for Airborne Equipment. This document defines the test conditions and procedures for testing airborne equipment and is the standard by which Boeing, Airbus and other manufacturers require avionic components and sub-systems to be tested.
The DL850 can take engineers to a new level of efficiency in the development of everything from green devices to complex advanced systems.
The objective of this paper is to show the close relationship between efficiency and power quality, and provide education on the causes of power quality, types of power quality issues, and provide guidance on measurement considerations.
This article looks at some of the factors that can affect the accuracy of power measurements and shows how users can address the challenges presented by the need for accurate energy-efficiency testing.
The request for lower uncertainties in power measurements are increasing,especially in the transformer industries. Their role is to ensure that the electricity is distributed in an efficient and reliable way.
This white paper describes the WT1800, a precision power analyzer that has been replaced by the WT1800E, a unit with numerous improvements including better accuracy. Please visit the WT1800E product page to learn more about the WT1800E.
To keep pace with the increasing speed of switching devices in inverters, Yokogawa has developed the WT1800 precision power analyzer with 10 times faster sampling speed and 5 times wider frequency bandwidth compared with previous models. Its basic accuracy is 0.15% and the frequency bandwidth of voltage and current is 0.1 Hz to 5 MHz (-3 dB, Typical) including the DC component. With up to six inputs, a single WT1800 unit can measure the efficiency of three-phase inverters. In addition, the high-speed data capturing mode allows the WT1800 to measure transient power. This paper describes the high-speed, real-time power measurement technologies underlying these functions.
In research published by the Electrical Engineering and Computer Sciences (EECS) Department of the University of California, Berkeley, the Yokogawa Test&Measurement WT5000 Precision Power Analyzer's high accuracy and modular architecture were used to perform calculations on efficiency, pulse width modulations, and harmonic content.
Test and measurement engineering work groups can have differing priorities and requirements, which often results in multiple instrumentation systems and data file formats, as well as incompatible reporting. This lack of effective communication between groups and instruments causes decreased efficiency and quality and increased spending and time to market. Unify test and measurement instrumentation, software, and data across engineering teams with a suite of solutions that caters to the different needs of engineering work groups, including accurate power data, fast sampling rates, long recordings of multiple different input types, and insights into waveform data.
Introducing the new Yokogawa Test&Measurement AQ6380 Optical Spectrum Analyzer. This new OSA includes many sought-after features including:
• An unprecedented 5 pm wavelength resolution
• ±5 pm wavelength accuracy
• 1200 nm to 1650 nm wavelength range
• 65 dB wide close-in dynamic range
• 80 dB stray light suppression
• Automated wavelength calibration
• Gas purging
• DUT-oriented interface and test apps
• Backward-compatible remote interface
• 10.4in intuitive touchscreen
• Up to 20x faster measurement
• Remote operation capabilities
In this video we review the major features of the DL350 showcasing its portability, functionality, and operability. This device features battery power, 18 signal conditioning input modules, and touchscreen access to enhanced triggers, math, and analysis.
In this video we demonstrate the GPS data logging capability of the DL350 Portable ScopeCorder. Recording Position, Velocity, and Altitude simultaneously with accelerometers or other analog inputs is simple with the DL350's built-in features.
This video demonstrates how to measure transient phenomena on power signals using the Yokogawa Test&Measurement PX8000 Precision Power Scope.
In several applications, especially those testing AC power to a standard such as IEC61000-3-11, the voltage and current signals must be monitored to confirm there are no major dips and/or swells in the signal. This can be done with instruments capable of reporting rms values, including power analyzers, traditional oscilloscopes, and some data acquisition systems.
To test to a standard, however, the instrument must have an accuracy spec that is traceable back to a national standard of calibration such as ISO17025 or NIST.
Why should you be concerned with your product’s power system voltage and current harmonics?
From an engineering perspective, harmonics produce excessive heat in equipment that causes significant damage and results in inefficient operation. From a business perspective, harmonics lead to reduced system capacity and increased maintenance, downtimes, and costs. To minimize or eliminate these issues and establish acceptable levels of harmonics, numerous power quality standards with specifications and limits for harmonic distortion, such as IEEE 519-2014 and IEC61000-3-2, have been introduced.
During this webinar, attendees will: