Optical Spectrum Analyzer

An Optical Spectrum Analyzer (or OSA) is a precision instrument designed to measure and display the distribution of power of an optical source over a specified wavelength span. An optical analyzer spectrum trace displays power in the vertical scale and the wavelength in the horizontal scale.

The expanding field of optics-related applications has created a variety of industries and organizations that require advanced optical spectral measurements for both R&D and manufacturing. These industries include telecommunications, consumer electronics, healthcare, life science/medical research, security, sensing, microscopy, and gas/chemical analysis, and environmental monitoring.

Yokogawa (formerly Ando) is the global leader in optical spectrum analyzers, delivering high quality, cutting-edge technology with dependability, performance, and flexibility for over thirty years.

Are you involved with Optical Testing for learning?
Click here to learn about our special OSAs for Education.

Free Yokogawa Fiber-Optic Communication Poster

AQ6380 OSA: 5 pm high wavelength resolution, ±5 pm accuracy, 65 dB wide close-in dynamic range, 80 dB high stray light suppression

  • AQ6360 optical analyzer
  • Cost-effective optical spectrum analyzer
  • Diffraction grating technology
  • Ideal for optical device manufacturing
  • AQ6370D Optical Spectrum Analyzer
  • Popular TELECOM wavelength Range of 600nm to1700nm
  • Ideal model for Telecommunications applications for single-mode and multi-mode optics

 

  • Dedicated SHORT wavelength Range of 350nm to1200nm
  • Accurately measure visible spectrum of 380nm to 780nm
  • Bio-sciences and beyond
  • Measuring 1064nm Nd:YAG, DPSS Laser sources
  • AQ6374 Wide Range Optical Spectrum Analyzer
  • Covers wavelengths from 350 to 1750 nm i
  • Visible lights (380 to 780 nm) and telecommunication wavelengths

High Performance LONG WAVELENGTH
The AQ6375E covers not only telecommunication wavelengths, but also the SWIR region which is often used for environmental sensing and medical applications.
・Lineup of 3 models [Standard, Extended and Limited]
・Covers wavelengths
     1200 to 2400 nm [Standard, and Limited]
     1000 to 2500 nm [Extended ]

MWIR WAVELENGTH with internal gas purge and cut filter
The AQ6376E is the latest version of our bench-top optical spectrum analyzer extending the wavelength coverage well beyond the NIR range of our previous models into the MWIR region from 1500 to 3400 nm.
Popular applications include the detection of gases such as carbon oxides (COx), nitrogen oxides (NOx), and hydrocarbon gas (CxHy) for environmental studies.

  • AQ6377 long-wavelength optical spectrum analyzer model covering the MWIR region over 5 μm
  • AQ6370D optical analyzer model with highest resolution (up to 20 pm)
  • Highest close-in dynamic (up to 78 dB)
  • Widest measurement power (up to 110 dB)

The AQ6370 Viewer is a package of PC application software for the AQ6380, the AQ6360, and the AQ6370 series Optical Spectrum Analyzer.

Band

Optical Communications

VIS

VIS & Optical
Communications

exNIR

MWIR

MWIR

Optical Communications

Model Number

AQ6370D-12

AQ6370D-22

AQ6373B

AQ6374

AQ6375B

AQ6376

AQ6377

AQ6380

  //cdn.tmi.yokogawa.com/2/36/tabs/8428-AQ6370D_m.png //cdn.tmi.yokogawa.com/2/36/tabs/8428-aq6370_1_SM.jpg //cdn.tmi.yokogawa.com/2/36/tabs/8428-AQ6374_front_sm.png //cdn.tmi.yokogawa.com/2/36/tabs/8428-AQ6375_Front_sm.jpg //cdn.tmi.yokogawa.com/2/36/tabs/8428-aq6370_1_SM_2.jpg AQ6380 Optical Spectrum Analyzer | Yokogawa Test&Measurement

Wavelength Range

600 - 1700 nm

350 - 1200 nm

350 - 1750 nm

1200 nm - 2400 nm

1500 nm - 3400 nm

1900 nm - 5500 nm

1200 nm - 1650 nm

Applications

General Purpose, Telecommunications

Bio-Photonics

General Purpose, Telecommunications

Bio-Photonics

Environmental Monitoring

Gas Sensing

Environmental Monitoring

Gas Sensing

Environmental Monitoring

Gas Sensing

Optics Research

Telecommunications

Applicable Fiber

SM, GI50, GI62.5
Large Core up to 200um

SM, GI50, GI62.5
Large Core up to 800um

SM, GI50, GI62.5
Large Core up to 800um

SM, GI50, GI62.5

SM, GI50, GI62.5

SM, Large Core up to 400um

SM (9.5/125 um)

Wavelength resolution setting (nm)

Min.

0.02

0.01

0.05

0.05

0.1

0.2

0.005

Max.

2

10

10

2

2

5

2

Wavelength accuracy (nm)

±0.1 (Full range)

±0.04 (1450 to 1520 nm)

±0.2 (Full range)

+/-0.05 nm (633 nm)

±0.2 (Full range)

±0.05 (633 nm)

±0.05 (1523 nm)

±0.5 (Full range)

±0.05 (1520 to 1580 nm)

±0.1 (1580 to 1620 nm)

±0.5 (Full range)

±0.5 (Full range)

±0.5 (Full range)

+/-0.02 nm
(1580 to 1620 nm)

+/-0.01 nm
(1580 to 1620 nm)

Maximum Sensitivity

-90 dBm
(1300 to 1620 nm)

-80 dBm
(500 to 1000 nm)

-80 dBm
(900 to 1600 nm)

-70 dBm
(1800 to 2200 nm)

-65 dBm
(1500 to 2200 nm)

-60 dBm
(2900 to 4500 nm)

-85 dBm
(1200 to 1600 nm)

Overview:

Lack of reliable high-speed internet access in rural regions, due to complicated logistics and the considerable costs involved to extend land-based networks to these areas, has inspired a wave of next-generation applications that will provide greater accessibility and reliability. Making use of “space laser” networks, these revolutionary solutions can relay digital traffic via low Earth orbit (LEO) satellite systems to provide low-latency, high-speed broadband services to communities typically beyond the reach of standard wireless and fiber networks.

Overview:

To accurately measure pulsed light using an optical spectrum analyzer (OSA), it is necessary to understand the characteristics of the OSA and select the appropriate measurement method and settings.

Overview:

We have developed the AQ6375 grating-based desktop optical spectrum analyzer, which can measure an optical spectrum over a wide wavelength range from 1.2 to 2.4 m with high wavelength resolution at high speed. Despite the popularity of desktop optical spectrum analyzers in the telecommunication wavelength region, a large-scale optical spectrum measurement system with a monochromator has commonly been used for measuring the long wavelength region, and so there was a need for a desktop optical spectrum analyzer for long wavelengths. Deep optical absorptions appearing in the long wavelength region around 2 m caused by CO2, NOX and H2O are attracting attention in the environmental and medical fields, and thus sensitive measuring equipment by laser absorption spectroscopy using a near infrared semiconductor laser is becoming more popular. With excellent optical spectrum measurement capabilities (high resolution and high speed), operability and maintenance performance, the AQ6375 optical spectrum analyzer will contribute to the performance improvement and spread of near-infrared semiconductor lasers used in laser absorption spectroscopy.

Overview:

A new type of computer based on the theory of quantum mechanics, a quantum computer, is currently in development by researchers around the globe. The theory of quantum mechanics describes nature at the atomic and subatomic level. Quantum technology has the potential to build powerful tools that process information using the properties of atoms, photons, and electrons. These quantum computers could also address challenges of much greater complexity than what today's computers can solve, and help further advancements in science, technology, medicine, and more.

With countries spending billions of dollars, the race for who can produce the first practical, commercialized quantum computer is on. There are currently several approaches to build this sort of computer, and this all begins with creating and initializing quantum bits, also known as qubits.

Overview:

This paper describes a compact optical channel monitor and a delayed interferometer having free-space optical elements such as lenses or mirrors, as an application of microoptics. These devices have been developed to be built into dense wavelength division multiplexing (DWDM) transmission systems. These optics use a Gaussian beam which is emitted through single-mode optical fibers and located near the optical axis. This paper explains the optical designs of these devices based on the Gaussian beam's behavior.
SANPEI Yoshihiro*1  SUZUKI Yasuyuki*2   IEMURA Kouki*3   ASANO Junichirou*3


*1
Communication and Measurement Business Headquarters, Optical Communication Measurement Development Department

*2Communication and Measurement Business Headquarters, Core Technology Development Department

*3Photonics Business Headquarters, Engineering Department IV

Overview:

Wavelength accuracy: Wavelength accuracy is a tolerance to the true value of a measured value when the standard wavelength is measured.  Wavelength repeatability:Wavelength repeatability is the stability of ...

Overview:

If you are performing wavelength calibration using the instrument's built-in light source, the warning message is an indication that the monochromator needs to be repaired. Please visit our Contact site to locate ...

Overview:

Please download the attached application note for instructions on how to make High Bit Rate Modulated OSNR Measurement for the AQ6319 and AQ6370 series Optical Spectrum Analyzer..

Overview:

The Chopped Light mode is used: To increase measurement level sensitivity by cutting the high frequency noise To detect only the light that the LS emitted, effective for free space measurement. In free space ...

Overview:

You can restore all settings for the AQ637X series OSAs to their factor defaults by performing a parameter initialization. This will clear all current parameter setting values and data as well as alignment adjustment ...

Overview:

If you have products currently in China that require calibration or repair, you may either return them to your local Yokogawa service center or the Yokogawa China Service & Repair Center.   Please be advised that ...

Overview:

The AQ6373 optical spectrum analyzer performs the color analysis function as follows:1. Measure the spectrum 2. Compare the measured spectrum with “color matching functions”  as defined by the CIE Using these ...

Overview:

Level Accuracy:Level Accuracy is a tolerance to the true value of measured value, when a standard level is measured with a standard wavelength. Level Linearity:Level Linearity is the width of error dispersion ...

Overview:
  • OSA measurement 
  • Wavelength sweep speed (typically specified for measurement over a 100nm span) 
  • Sweep speed is especially important when performing many repetitive measurements
  • 1x setting standard sweep speed vs. 2x sweep speed

 

Overview:

The remote viewer may not start if the screen resolution is too low.  Adjust the screen resolution to 1024 by 768 pixels (or larger) then restart the software.​

Overview:

Yes, the AQ6370 Optical Spectrum Analyzer Viewer Software is compatible with Windows 7 32-bit and 64-bit. Note: Please make sure the correct USB driver is installed for either Windows 7 32-bit or 64-bit.

Overview:
If the AQ637X series OSA is already running and you attempt to connect an external display, the OSA will not automatically detect the external display. The OSA will need to be re-booted before it can recognize and ...
Overview:
Please clean the fiber used between the calibration output and the optical input.  
Overview:

The AQ6370 OSA cannot load and re-display the data saved by an AQ6370B. However, the AQ6370 Viewer software can display the data saved by both instruments. Also please note that the AQ6370B OSA can load and re-display ...

Overview:
  • AQ6319 Optical Spectrum Analyzer
  • Warning "142 WL calibration failed"
  • Displayed when light source level is not enough at wavelength calibration or calibration cannot be executed because wavelength difference is out of calibration 
Overview:
The maximum input power that the AQ6370B can measure for pulsed light measurements is +20dBm per resolution at full span, per channel. Keep in mind that this limit is applicable to an averaged power of pulsed light, ...
Overview:

The resolution is controlled by 3 factors: Input Slit Detraction Grating  Output Slit The resolution setting controls the output slit disk. This disk has a fixed number of slits in it. Since the setting only control ...

Overview:

It is possible to convert an AQ6370 Binary file to ASCII .CSV file using the AQ6370 Viewer Software. Please keep in mind there are different AQ637X series OSA Viewer software will load specific binary file extensions.

Overview:
For the AQ6373 you can use a maximum 800 micron core fiber that must be terminated in a standard FC connector.   For the AQ6375 and AQ6370 series OSA you can use a maximum 200 micron core fiber which, ...
Overview:
The AQ637X OSA has a feature called Auto Offset that it performs every 10 minutes. What this feature does is zero out the OP amps in the OSA to ensure constant level accuracy. This feature will however, stop the OSA ...
Overview:

No, unfortunately due to the number of current fiber combinations, we do not stock optical fibers. There are many companies that specialize in optical fiber cords.

Overview:

The AQ6370C Optical Spectrum Analyzer was developed in accordance with the IEC standard: WG4 (IEC 61280-1-3) Test procedures for general communication subsystems -Central wavelength and spectral width measurement. We cannot guarantee the RMS ...

Overview:

This comprehensive training module covers the following topics:

  • Introduction & Product Familiarization
  • Basic OSA Principles & Theory
  • Advanced Analysis Features
  • Basic Operations
Case study
Case Study | Laval University Speeds Up Advanced Photonics Research  
(Laval University Photonics Research Case Study)
Overview:

Laval University is a research institution world renowned for optics and photonics technology research and training, and are the founders of The Center for Optics, Photonics, and Lasers (COPL).

The university's researchers needed a faster and more efficient and practical solution to measure the spectral performance of lasers and optics beyond traditional telecom wavelengths. To achieve this, they contacted Yokogawa Test&Measurement and collaborated to develop a breakthrough grating-based optical spectrum analyzer that could cover MWIR wavelengths up to 5.5 um. Click to learn how productivity in the research lab dramatically increased for precise characterization of laser sources, and active/passive optical components in the fields of communications, medical diagnosis, advanced optical sensing, and environmental and atmospheric sensing.

Overview:

In this poster session research from The European Conference on Lasers and Electro-Optics 2017, researchers from Texas A&M University, Texas A&M University at Qatar, and Florida A&M University use a Yokogawa Test&Measurement AQ6376 Optical Spectrum Analyzer to detect methane in the air.

Overview:

In a research paper published on Nature.com, a team of researchers from the University of Virginia, Peking University, Shanxi University, and California Institute of Technology use a Yokogawa Test&Measurement Optical Spectrum Analyzer in order to achieve spectrum measurements above 1200 nm.

Product Overviews

    Overview:

    The AQ6370 is Yokogawa's high speed and high performance Optical Spectrum Analyzer for characterization of optical communications system and optical components. Thirteen built-in analysis functions and seven trace calculations for popular applications can be utilized with a simple function key. Yokogawa continues to provide you quality products that simplify your business practices.

    Overview:

    Introducing the new Yokogawa Test&Measurement AQ6380 Optical Spectrum Analyzer. This new OSA includes many sought-after features including:

    • An unprecedented 5 pm wavelength resolution
    • ±5 pm wavelength accuracy
    • 1200 nm to 1650 nm wavelength range
    • 65 dB wide close-in dynamic range
    • 80 dB stray light suppression
    • Automated wavelength calibration
    • Gas purging
    • DUT-oriented interface and test apps
    • Backward-compatible remote interface
    • 10.4in intuitive touchscreen
    • Up to 20x faster measurement
    • Remote operation capabilities

    Overview:

    The AQ6375 is the first bench-top optical spectrum analyzer covering the long wavelengths over 2 ?m.
    It is designed for researchers and engineers who have been struggling with inadequate test equipment to measure in these long wavelength ranges. The AQ6375 achieves high speed measurements with high accuracy, resolution and sensitivity, even while providing full analysis features. Troublesome calibration steps and the development of external analysis software is no longer required.

Webinars

Looking for more information on our people, technology and solutions?


Contact Us
Top