你是否关注过示波器的重要隐形参数——采集内存?
提到示波器参数, 大家一定会首先想到两个: 采样率 带宽
采样率 通常用xx S/ s来标识, 带宽通常用xx Hz来表示。对, 就是你看到的印在示波器上非常显眼的参数。
带宽 的定义很简单, 问下度娘就知道, 这个参数代表了示波器的上限频率( 正弦波, 测试某频率处时衰减为3 db)。
示波器的带宽是不是越高越好? 回答“ 是” 的同学, 我们做朋友好吗? 因为你一定非常 不! 差! 钱! 要知道带宽越高, 示波器越贵啊~~
但实际上如果你测试的信号只有KHz级,却用上了GHz级带宽的示波器,除了引入更多的噪声之外,对测试并没有其它的好处;相反,在测试较弱信号时,为了去除杂乱高频噪声的影响,还需要使用滤波(带宽限 制)的手段,来人工降低带宽!
采样率呢,定义也很明确,那就是每秒钟采样的点数。如果单位时间内采样的点数太少,就会出现令人烦恼的欠采样现象。
违反Nyquist 定理而产生的捕捉波形与真实波形有差异的现象。Nyquist定理的原意是: 如果要从相等时间间隔取得的采样点中, 毫无失真地重建模拟信号波形, 则采样频率必须大于或等于模拟信号中最高频率成份的两倍。因而对于一个最大信号频率为 f MAX的模拟信号 fa, 其最小采样频率 fs 必须大于或等于 2 × f MAX 。
违反了Nyquist 定理, 就会出现以下的情况:
信号本来长这样:
欠采样下的波形:
那么问题来了,如果示波器标识的采样率是1GS/s,在我们实际测试中,是不是就会以每秒钟1G的速度进行采样呢? 为什么有时候我们使用G级别高速采样率的示波器,采集K级别频率的信号,也会出现欠采样现象呢?
因为标识的采样率,是指示波器硬件AD所能达到的最高采集速度,而我们在使用示波器进行波形采集所使 用的真实采样率,往往并不是这个最高速度!!!
那么真实的采样率到底由什么来决定?
采样率“fs”、采集内存“L”、测量时间“T” 的关系 ,用力敲黑板——这是本文中心思想!
一个测试过程所需要的时间是客观决定的,要测2秒,是万万不能掐头去尾只取中间1秒的。那么根据公式,采样率(fs)的高低,只取决于采集内存(L)的大小。这就是为什么我们要特别关心这个非常低调的参数。
采集内存这个参数,恰如数码相机的像素,其性能的扩展,并不仅仅是缓存器件单独性能的体现,而是需要全部处理、运算、显示系统性能的协同提升。因此,只有选择长存储的示波器,才能成就我们既要高速更要 持久的愿望。
横河DL系列是长存储示波器的鼻祖,先后推出了一系列广受好评的长存储示波器。
最新推出的DLM3000,更是标配了一流的125M大容量采集内存,通过选件还可以将这个重要参数扩展到500M。这意味着即使我们使用2.5G的高采样,也能够测试200ms的时间。具体到实际应用,如果测试500kHz波特率的高速CAN信号,为了正确识别与捕捉高低电平信号,采用不高不低正好恰当的5MHz采样率,也可以测试100秒的时间。
这个紧凑型小体积的触屏示波器可以大大提高您的生产效率。它能满足设计和评估先进的串行总线、电源及机电系统的前瞻需求,带宽从200MHz到500MHz,具有多达4个低噪声输入通道,并且在同行业中具有显著的价格优势。