The appliance industry encompasses household and commercial devices, driven by urbanization, rising incomes, and the demand for energy-efficient, smart products. High-level categories include major appliances (e.g., HVAC systems, lighting, refrigerators, washing machines) and small appliances (e.g., coffee makers, vacuums), alongside commercial equipment such as industrial dishwashers.
Key trends include smart appliances, IoT integration with remote control capabilities, and low power consumption designs. These advances highlight innovation, efficiency, and environmental compliance while enabling features like AI, voice controls, and smart energy management.
Yokogawa Test & Measurement supports R&D, design validation, and manufacturing testing at appliance companies with precision instruments for waveform, electrical and mechanical power, thermocouple, vibration, and compliance testing. Yokogawa’s world-class instruments are particularly suited for engineering inverters, power converters, compressors, motors, and board-level electronics.
In the test of new washing machine, voltage, current, power, and the control signal on the time control panel need to be recorded.
Detailed measurement methods, supply voltage settings, and others are specified for the harmonic/flicker standard test.
The accuracy of a measurement instrument varies with the range over which a reading is measured. Not all instrument manufacturers specify accuracy and ranges in the same manner. This article explores the impact of range definitions on measurement accuracy and how one can be mindful when comparing accuracy across instruments.
What is an Oscilloscope? Oscilloscopes, also called digital storage oscilloscopes (DSOs) or mixed signal oscilloscopes (MSOs), are common test instruments used to display, analyze, and troubleshoot electrical or physical signals.
Evaluation of high efficiency motors in large air heaters
What is a Power Analyzer? Power analyzers and power meters measure electrical power in devices that generate, transform, or consume electricity.
【search key】 WT1, WT18, WT180, WT3, WT30, WT5, WT50, WT500, WT
Energy consumption in low-power and standby modes is an important issue due to increased awareness that energy resources are becoming limited and demand for energy-saving household electrical appliances continues to grow. IEC62301 Ed2.0 (2011) and EN 50564:2011 define standby mode as the lowest energy consumption of an appliance not performing its main function, when connected to the mains. IEC62301 Ed2.0 (2011) defines test methods and requirements for both the mains supply and the test equipment. It is crucial that design and test engineers choose highly accurate power measurement tools to confirm that their devices meet these requirements.
A ScopeCorder is a powerful portable data acquisition recorder that combines features of a multi-channel digital oscilloscope and a high-performance oscillographic recorder. As such, it can capture and analyze both short-term transient events and long-term trends for periods up to 200 days.
Measuring efficiency with high precision: simultaneous measurement of input and output
Observation of Inverter Switching Waveforms
Using the OR trigger and Dual Capture, it is easy to trap and record failure conditions on electrical harnessses (wiring interconnects) over a long duration test.
In recent years the buzzword "all electric" is becoming popular, which refers to kitchen appliances, water heaters, and other devices in the home all being supplied with electric power.
ANIS8000APP02-01EN
Harmonic content is a key contributor to low power quality, and agency standards are written to ensure manufacturers take action to measure and control harmonics.
Measuring Conversion Efficiency of Power Conditioner
Surge Waveform Recording & Power Monitoring
Evaluation of Wireless Charging System for EV/PHV
In recent years the buzzword “all electric” is becoming popular, which refers to kitchen appliances, water heaters, and other devices in the home all being supplied with electric power.
Reference equipment for power calibration
Evaluation of vacuum cleaner requires to measure distorted waveform.
Evaluating Magnetic Components
One of the main responsibilities of engineers and technicians is data analysis, and this article will show how multi-touch technologies can be used to improve the performance of this and other related tasks.
This white paper describes the WT1800, a precision power analyzer that has been replaced by the WT1800E, a unit with numerous improvements including better accuracy. Please visit the WT1800E product page to learn more about the WT1800E.
To keep pace with the increasing speed of switching devices in inverters, Yokogawa has developed the WT1800 precision power analyzer with 10 times faster sampling speed and 5 times wider frequency bandwidth compared with previous models. Its basic accuracy is 0.15% and the frequency bandwidth of voltage and current is 0.1 Hz to 5 MHz (-3 dB, Typical) including the DC component. With up to six inputs, a single WT1800 unit can measure the efficiency of three-phase inverters. In addition, the high-speed data capturing mode allows the WT1800 to measure transient power. This paper describes the high-speed, real-time power measurement technologies underlying these functions.
The objective of this paper is to show the close relationship between efficiency and power quality, and provide education on the causes of power quality, types of power quality issues, and provide guidance on measurement considerations.
This article looks at some of the factors that can affect the accuracy of power measurements and shows how users can address the challenges presented by the need for accurate energy-efficiency testing.
Video training series for WT5000 Precision Power Analyzer from Yokogawa Test&Measurement: Power analyzer overview of front and back panel inputs and element types.
Laval University is a research institution world renowned for optics and photonics technology research and training, and are the founders of The Center for Optics, Photonics, and Lasers (COPL).
The university's researchers needed a faster and more efficient and practical solution to measure the spectral performance of lasers and optics beyond traditional telecom wavelengths. To achieve this, they contacted Yokogawa Test&Measurement and collaborated to develop a breakthrough grating-based optical spectrum analyzer that could cover MWIR wavelengths up to 5.5 um. Click to learn how productivity in the research lab dramatically increased for precise characterization of laser sources, and active/passive optical components in the fields of communications, medical diagnosis, advanced optical sensing, and environmental and atmospheric sensing.
In the research paper published by the International Measurement Confedertion (IMEKO) via their online journal Acta IMEKO, researchers from Yokogawa Test&Measurement and the National Institute of Advanced Industrial Science and Technology's (AIST) National Metrology Institute of Japan (NMIJ) use a Yokogawa Test&Measurement MT300 Digital Manometer.
For standby power measurement and energy certification maintenance, we rely on Yokogawa Test&Measurement instruments. Their precision, accuracy, and ease-of-use are unrivaled. When given a choice between other test and measurement equipment and Yokogawa, our technicians always go for Yokogawa first. The support team provides thoughtful insights based not just on our industry but also our company’s specific needs. My team has used Yokogawa Test&Measurement instruments for decades and will continue to do so well into the future.
—Director of Technology Laboratories, International Multi-Brand Manufacturer of Major Home Appliances
We developed an algorithm to optimize induction motor operation and produce an average power consumption savings of at least 10%. To demonstrate our algorithm’s effectiveness, we needed a proven and verified system that would give these results credibility. The solution provided by Yokogawa Test&Measurement enabled us to monitor and refine our algorithm using real-time speed, power, and temperature readings – data that would normally be incredibly difficult to accurately obtain. Having these real-world results that demonstrate the effectiveness of our algorithm means we can be more efficient with our own customers. —Neil Singer, President, AC Kinetics
The DLM5000HD Series High-Definition Oscilloscope is the latest addition to the Yokogawa Test&Measurement oscilloscope line-up that takes you beyond eight channels.
Adaptability is key in the development of high-performance and intelligent power semiconductor technologies and mechatronics in modern electric vehicles, motor controls, and energy efficient electronic designs. With up to 16 bits high resolution, best-in-class startup speed, the ability to support measurements up to 16 channels, high noise immunity for harsh environments, and more, the four-to-eight channel DLM5000HD Series enables easy touch navigation through a wealth of analysis features.
Introducing the new Yokogawa Test&Measurement AQ6380 Optical Spectrum Analyzer. This new OSA includes many sought-after features including:
• An unprecedented 5 pm wavelength resolution
• ±5 pm wavelength accuracy
• 1200 nm to 1650 nm wavelength range
• 65 dB wide close-in dynamic range
• 80 dB stray light suppression
• Automated wavelength calibration
• Gas purging
• DUT-oriented interface and test apps
• Backward-compatible remote interface
• 10.4in intuitive touchscreen
• Up to 20x faster measurement
• Remote operation capabilities
The DLM3000 Mixed Signal Oscilloscopes Automotive Serial Bus features can display up to four simultaneous serial buses and decoded data.
The Yokogawa DLM3000 Mixed Signal Oscilloscopes, oscilloscope features a brand-new computing platform and available power supply analysis functions.
The Power Consumption Measuring Software from Yokogawa Test&Measurement provides a comprehensive solution for standby power testing and meets the requirements of:
In this video, application engineer Kourtney Morrison demonstrates how to use the software for easy standby power measurement.
A demonstration reading a 4 - 20 mA transducer into an analog channel on the Portable DL350 ScopeCorder.
This video demonstrates how to measure transient phenomena on power signals using the Yokogawa Test&Measurement PX8000 Precision Power Scope.
In several applications, especially those testing AC power to a standard such as IEC61000-3-11, the voltage and current signals must be monitored to confirm there are no major dips and/or swells in the signal. This can be done with instruments capable of reporting rms values, including power analyzers, traditional oscilloscopes, and some data acquisition systems.
To test to a standard, however, the instrument must have an accuracy spec that is traceable back to a national standard of calibration such as ISO17025 or NIST.
Learn how to sync video data from a high-speed camera with data acquisition devices and scopes used by engineers in test and measurement applications.
Looking for a turnkey high-speed data transfer solution with better bandwidth and minimal manual overhead?
The 10Gb Ethernet option on the Yokogawa Test&Measurement DL950 ScopeCorder fits that very role and makes capturing and recording high-speed data seamless and convenient.
Record data at 50 times the speeds of traditional Ethernet and USB connections and automatically transfer data to your PC in a single step using the IS8000 Integrated Software Platform.
CAN Bus communication is widely used in the transportation industry where reliable transmission of data is paramount. Monitoring and recording these communications can be easier when using the proper instruments. In this video, a Yokogawa Test&Measurement Applications Engineer demonstrates how to setup the DL950 ScopeCorder to read the temperature of a motor drive alongside its voltage and current output.
Learn what signal types can be input into a scope using a Yokogawa Test&Measurement DL950 ScopeCorder, a unique combination of a 32-channel mixed signal oscilloscope and portable DAQ that captures both high-speed transient events and long-run trends.
Having multiple memory options allows engineering groups to optimize how data is stored, no matter if you need to record for a long time at slower sampling rates, do a fast capture at high sampling rates, or anything in between.
The Yokogawa Test&Measurement DL950 ScopeCorder operates as an oscilloscope and incorporates the ability to record data for long periods of time like a data acquisition recorder. There are four memory types on the DL950 ScopeCorder: internal memory, solid state drive, flash memory, and PC storage through the IS8000 Integrated Test and Measurement Software Platform. This videos talks about the advantages of each of these and how to pick the best data recording method for you.
We went live on YouTube to answer your questions about the DLM5000HD High-Definition Oscilloscope from Yokogawa Test&Measurement and to discuss how to make the most of this incredible instrument. This live stream covers potential applications, settings and features like its high resolution, eight channels, serial bus capabilities, and portability, and last (but definitely not least) a few demonstrations.
Learn how to log power measurement data continuously from a digital power analyzer when connecting it to a data recorder to easily and securely collect and synchronize voltage, current, harmonics, and power data for long periods of time, while also collecting thermocouple, RTD, and standard analog signal, all in one place.
We are going live on YouTube to answer your questions about the Yokogawa Test&Measurement WT5000 Precision Power Analyzer. Join us to discuss how to make the most of this versatile instrument based on your application needs. Whether you’ve worked with a power analyzer for years or curious if it is a good fit for your engineering work group, this live stream can help.
We are going live on YouTube to answer your questions about the Yokogawa Test&Measurement DL950 ScopeCorder. Join us as we discuss how to make the most of this versatile instrument based on your application needs. Whether you’ve worked with a ScopeCorder for years or curious if it is a good fit for your engineering work group, this live stream can help.
Mastering the fundamentals of optical wavelength measurements and having a solid understanding of measurement principles for optical sources and devices is key to measuring with confidence. This webinar provides a thorough review of these foundational elements and concepts as well as:
Why should you be concerned with your product’s power system voltage and current harmonics? From an engineering perspective, harmonics produce excessive heat in equipment that causes significant damage and results in inefficient operation. From a business perspective, compliance is an absolute requirement for entry into global markets. To minimize or eliminate these issues and establish acceptable levels of harmonics, numerous power quality standards with specifications and limits for harmonic distortion, such as IEEE 519-2014 and IEC61000-3-2, have been introduced. During this webinar, attendees will gain knowledge on the inner workings of harmonics, learn best practices for accurately measuring harmonics, learn to recognize and distinguish the critical difference between DFT and FFT, and discover important measurement tradeoffs across various test equipment.
There are countless technologies available for optical communications devices and systems validation. With so many specifics to take into consideration, it's not always easy for an engineer to determine the best networking and fiber optic measurement solution to address their measurement needs.
Key discussions in this on-demand webinar include: