EV Charging

Maximize Power Conversion


Efficiency improvements in the development and compliance cycles mean a faster route to production and sales. Yokogawa Test&Measurement has the tools that enable test engineers to more effectively analyze electric charging systems, from board to system level. Whether you are benchmarking efficiency, troubleshooting power electronics, or ensuring compliance, explore our specialized suite of solutions for EV charging systems.

EV Charging System Charge Efficiency | Yokogawa Test&Measurement

 

EV Charging System Measurement Challenge | Yokogawa Test&Measurement


Charging systems require specialized instrumentation purpose-built to perform key measurements at a system’s input and outputs. Selecting the best instrument for each application depends on the level of accuracy required, the number of channels needed, and the type of signal being acquired.

EV Charging System Testing | Yokogawa Test&Measurement
 

Choosing the Right Instrument for Power Quality and Energy Efficiency - Power Compliance, Efficiency, and Harmonics Tests
Application Note

Three variables to consider are measurement type, measurement standard, and instrument type. This guide defines these variables and provides helps to select the best instrument for your application.

Read the App Note

Choosing the Right Instrument for Power Quality and Energy Efficiency - Power Compliance, Efficiency, and Harmonics Tests | Yokogawa Test&Measurement
 

Power Quality and Energy Efficiency for Power Measurements
White Paper

More than 40% of the total energy consumed in the United States is used to operate buildings. This white paper explains the relationship between power efficiency and power quality and identifies causes and types of power quality issues.

Read the White Paper

Choosing the Right Instrument for Power Quality and Energy Efficiency - Power Compliance, Efficiency, and Harmonics Tests | Yokogawa Test&Measurement
 

eBook

Electricity Applied Ebook | Yokogawa Test & Measurement

Electricity Applied

A handbook of common applications and key measurement parameters.
Click to learn more

Webinar

Harmonic Analysis on Distorted Waveforms Webinar | Yokogawa Test&Measurement

Harmonics

Harmonic Analysis on Distorted Waveforms
Click to learn more

Case Study 

Power Analysis Solar Team Twente Case Study | Yokogawa Test&Measurement

Solar Team Twente

Accurate power analysis boosts solar race car's range and speed
Click to learn more

 

Overview:

This application note details the process for measuring and verifying proper motor function using a power analyzer, and how to troubleshoot common errors in the measured output.

Overview:

To best utilize SiC devices for improved energy efficiency in equipment, it is important to optimize the internal device peripheral circuits in the inverter according to the device characteristics.

Overview:

Measurement guidance related to field-oriented control (FOC) of electric motors with example use cases that illustrates how this is accomplished using a power analyzer and/or a ScopeCorder. Specifically addressed are direct and quadrature currents of a surface-mounted permanent magnet motor (SMPM) with field weakening applied. The techniques illustrated can also be applied to other FOC variables, algorithms, and motor technologies.

Overview:
  • Power consumption/quality measurements for product design and test
  • Design, compliance, and customer information
  • Best practices
  • Instruments and components
Overview:

The objective of this paper is to show the close relationship between efficiency and power quality, and provide education on the causes of power quality, types of power quality issues, and provide guidance on measurement considerations.

Overview:

Part 1 - Part 7 of the Yokogawa Test&Measurement IS8000 Integrated Test and Measurement Software Platform training module series. These videos provide a big picture look at the software.

Overview:

10-video training series from Yokogawa Test&Measurement that covers the basics of power analyzers including an overview of our power analyzers, their theory, wiring, filters and sync source, and voltage and current ranges. 

Overview:

Video training series for WT5000 Precision Power Analyzer from Yokogawa Test&Measurement: Power analyzer overview of front and back panel inputs and element types.

Overview:

As a respected pioneer in folding bikes, Brompton’s first foldable e-bikes was eagerly anticipated. However, to develop such high-performance e-bikes engineers at Brompton needed to perform comprehensive dynamic testing to achieve rider – bike harmony.

 

Overview:

As a one of the largest motorcycle manufacturers, Triumph confirms every bike is precision-engineered to deliver a complete riding experience. To ensure higher performance and efficiency of the motorcycle powertrain, Triumph test their engines under rigorous conditions, measuring and analyzing a vast array of parameters under varying conditions, from sensors configured and positioned all around a bike. 

Overview:

AC Kinetics was challenged by Georgia Pacific to develop an algorithm to optimize the operation of large AC induction motors by 10%. To test their algorithm on a motor drive, they needed to demonstrate repeatable measurements in a real world application.

Overview:

In research published by the Electrical Engineering and Computer Sciences (EECS) Department of the University of California, Berkeley, the Yokogawa Test&Measurement WT5000 Precision Power Analyzer's high accuracy and modular architecture were used to perform calculations on efficiency, pulse width modulations, and harmonic content.

Overview:

In a research paper published by Digital Commons @ Cal Poly, a researcher from California Polytechnic State University uses a Yokogawa Test&Measurement Digital AC Meter to measure the current and power of household devices in stand-by mode.

Overview:

In the paper published on OpenUCT, a Cape Town University researcher uses a Yokogawa Test&Measurement High-Performance Power Analyzer to record instantaneous voltage and current of a three-phase, four-wire system.

Overview:

In a research paper published on IEEE Xplore, Electric Power Research Institute (EPRI) researchers use a Yokogawa Test&Measurement Advanced Digital Power Meter to consistently and accurately measure computer power supply dc output/input voltage, current, power, and power factor.

Overview:

In a research paper published on IEEE Xplore, researchers from Częstochowa University of Technology and University of Naples Federico II use a Yokogawa Test&Measurement WT310 Digital Power Analyzer to attain accurate and reliable power and energy measurements from the ccNUMA/SMP system. 

Overview:

We developed an algorithm to optimize induction motor operation and produce an average power consumption savings of at least 10%. To demonstrate our algorithm’s effectiveness, we needed a proven and verified system that would give these results credibility. The solution provided by Yokogawa Test&Measurement enabled us to monitor and refine our algorithm using real-time speed, power, and temperature readings – data that would normally be incredibly difficult to accurately obtain. Having these real-world results that demonstrate the effectiveness of our algorithm means we can be more efficient with our own customers. —Neil Singer, President, AC Kinetics

Overview:

It’s not an exaggeration to say I owe a good bit of my career success to Yokogawa Test&Measurement. By using their ScopeCorders that combine the best parts of an oscilloscope and DAQ, projects that once took weeks across multiple instruments suddenly only took a few hours with just one instrument. The impact on what I could accomplish really was quite remarkable, and my ability to accurately complete projects in record time made me look incredible. No matter how complex or convoluted the task, the ScopeCorders never fail to easily handle anything I throw at them. They’re amazing instruments and I tell others about them every chance I get. —Kenneth Shoemaker, Automotive Industry Consultant/Owner at Panama Prototypes

Overview:

When I started with my company almost 20 years ago, Yokogawa Test&Measurement instruments were already in use and the engineers had no intention of switching. In fact, we still routinely use some of the older instruments because, well, they just work! The equipment doesn't really become obsolete, and they support their instruments as long as is feasible, which ultimately saves us money. Even so, as things change in our industry Yokogawa adjusts to meet those changes. From our sales representative through technical support and more, I can count on the Yokogawa team to really listen and work with us to provide a specific solution for unique problems.

—Senior Lab Technology Engineer, EMI/EMC, Large Power Systems, Testing, Global Design of Commercial and Industrial Power, Cooling, and IT Infrastructure

Overview:

I’ve been using Yokogawa Test&Measurement instruments for power measurement and analysis for several years and they always get the job done. They provide extensive and thorough documentation for their equipment and their drivers are very handy. Features like screengrabs of test results for easier sharing and the remote interface (which minimizes the time we spend having to automate tests) have proven to be incredibly helpful. My team needs instruments that are well documented, easy to use, and reliable. Yokogawa instruments check all these boxes.

—Power Drive Systems Electrification Validation Test Development, Fortune 500 Leading Global Supplier of Sustainable Automotive Solutions

Overview:

For standby power measurement and energy certification maintenance, we rely on Yokogawa Test&Measurement instruments. Their precision, accuracy, and ease-of-use are unrivaled. When given a choice between other test and measurement equipment and Yokogawa, our technicians always go for Yokogawa first. The support team provides thoughtful insights based not just on our industry but also our company’s specific needs. My team has used Yokogawa Test&Measurement instruments for decades and will continue to do so well into the future.

—Director of Technology Laboratories, International Multi-Brand Manufacturer of Major Home Appliances

How-tos

    Overview:
    • Measuring Individual Phase Power on Three Phase Systems
    • Standard Delta computation function
    • Available on Yokogawa WT5000 Precision Power Analyzer
    Overview:

    This video demonstrates how to measure transient phenomena on power signals using the Yokogawa Test&Measurement PX8000 Precision Power Scope.

    In several applications, especially those testing AC power to a standard such as IEC61000-3-11, the voltage and current signals must be monitored to confirm there are no major dips and/or swells in the signal. This can be done with instruments capable of reporting rms values, including power analyzers, traditional oscilloscopes, and some data acquisition systems.

    To test to a standard, however, the instrument must have an accuracy spec that is traceable back to a national standard of calibration such as ISO17025 or NIST.

    Overview:

    We are going live on YouTube to answer your questions about the Yokogawa Test&Measurement DL950 ScopeCorder. Join us as we discuss how to make the most of this versatile instrument based on your application needs. Whether you’ve worked with a ScopeCorder for years or curious if it is a good fit for your engineering work group, this live stream can help.

    Overview:

    We are going live on YouTube to answer your questions about the Yokogawa Test&Measurement WT5000 Precision Power Analyzer. Join us to discuss how to make the most of this versatile instrument based on your application needs. Whether you’ve worked with a power analyzer for years or curious if it is a good fit for your engineering work group, this live stream can help.

    Overview:

    Learn what signal types can be input into a scope using a Yokogawa Test&Measurement DL950 ScopeCorder, a unique combination of a 32-channel mixed signal oscilloscope and portable DAQ that captures both high-speed transient events and long-run trends.

    Overview:

    We went live on YouTube to answer your questions about the DLM5000HD High-Definition Oscilloscope from Yokogawa Test&Measurement and to discuss how to make the most of this incredible instrument. This live stream covers potential applications, settings and features like its high resolution, eight channels, serial bus capabilities, and portability, and last (but definitely not least) a few demonstrations.

    Overview:

    Learn how to log power measurement data continuously from a digital power analyzer when connecting it to a data recorder to easily and securely collect and synchronize voltage, current, harmonics, and power data for long periods of time, while also collecting thermocouple, RTD, and standard analog signal, all in one place.

    Overview:

    Learn when to use line filters and/or frequency filters while making power measurements with a power analyzer.

Webinars

    Overview:

    You know the basics of electrical power measurements, have set up your dyno, and made key measurements – which is great. But as your motor and drive projects progress, the complexities of system drive requirements can change frequently. Control algorithms, networked communications, and mechanical systems form a complex web of interactions that need sorting. This 60-minute webinar explains how to get past ground-level measurements and delve into comprehensive solutions that leverage test and measurement instruments including power analyzers, high-speed data acquisition, and real-time software.

    Topics include:

    • How to avoid the “gotcha's” of inverter-based measurements
    • Computations for field-oriented control
    • The integration of CAN bus communications
    • Correlations in the frequency domain
    • Other advanced motor and drive topics

    The technical presentation includes an audience Q&A.

    Overview:

    Although DC power measurements can be fairly straightforward, complexities with AC power measurements arise when dealing with distorted waveforms, fluctuating power factors, and multiple phases, which introduce intricacies that complicate an otherwise simple measurement process.

    This on-demand webinar provides an informative dive into the various fundamental aspects of power measurement and includes:

    • A look at multi-phase measurements and measurement techniques
    • A review of practical applications
    • Real-world examples
    Overview:

    Why should you be concerned with your product’s power system voltage and current harmonics? From an engineering perspective, harmonics produce excessive heat in equipment that causes significant damage and results in inefficient operation. From a business perspective, compliance is an absolute requirement for entry into global markets. To minimize or eliminate these issues and establish acceptable levels of harmonics, numerous power quality standards with specifications and limits for harmonic distortion, such as IEEE 519-2014 and IEC61000-3-2, have been introduced. During this webinar, attendees will gain knowledge on the inner workings of harmonics, learn best practices for accurately measuring harmonics, learn to recognize and distinguish the critical difference between DFT and FFT, and discover important measurement tradeoffs across various test equipment.

Looking for more information on our people, technology and solutions?


Contact Us

Precision Making

Top