Investigations of the Low Temperature Combustion Regions and Emissions Characteristics of Aerospace F24 in a Constant Volume Combustion Chamber and a Common Rail Direct Injection Ci Engine

In the below linked research paper published by the Department of Mechanical Engineering at Georgia Southern University, researchers use a Yokogawa Test&Measurement DL850 ScopeCorder for real-time high-speed data acquisition on a research engine to investigate the low-temperature combustion regions of aerospace F24 and ULSD for emission reduction.

  • Title: Investigations of the Low Temperature Combustion Regions and Emissions Characteristics of Aerospace F24 in a Constant Volume Combustion Chamber and a Common Rail Direct Injection Ci Engine
  • Author: Richard C. Smith, III
  • Abstract: A study was conducted to investigate the low temperature combustion (LTC) regions of aerospace F24 and ULSD in the static setting of a CVCC and the dynamic setting of a CRDI research engine. This research is conducted to reduce in-cylinder emissions by understanding and implementing a technique to achieve an extended LTC. Emissions data for this study were collected during the operation of the CRDI research engine with a MKS 2030 FTIR and an AVL Microsoot 483. The parameters researched within the static setting of the CVCC included the determinations of the cool flames and NTC regions within the LTHR region. Investigations using the CRDI research engine included eight trials. These trials consisted of a baseline for each directly injected fuel, a trial with 0.24 bar of boosted intake air, a trial with 20% of recirculated exhaust gas, and finally a trial with PFI injections of a low reactivity bio-alcohol, n-butanol, during the intake stroke to cool the combustion chamber. PFI parameters also include additions of 0.24 bar of boost, 10% recirculated exhaust gas, and a pilot direct injection 60° BTDC. The low reactivity PFI fuel is utilized to facilitate an extended LTC. The CVCC results concluded with F24 and ULSD obtaining equal values for peak pressure and peak temperature, with the values of 42.3 bar and 1837.5 K, respectively. F24 maintained a longer period of cool flame formations and overall LTHR with values of 1.6ms and 1.96ms, respectively. The mass fraction burned results of ULSD within both the CVCC and dynamic setting of the CRDI research engine yielded better efficiency than F24 in nearly all trials. The trials implementing a LTC method within the CRDI research engine, was found to extend the low temperature combustion region of both F24 and ULSD. PFI trials reduced ignition delay by approx. 3 CAD and massively reduced soot emissions of ULSD and F24 by 9.9 and 2.5 times, respectively, compared to ULSD at baseline parameters. This reduction of soot was the greatest in-cylinder emissions reduction in the entire study. ULSD performed better overall in gaseous emissions outputs.

To access the full research paper, click here: Investigations of the Low Temperature Combustion Regions and Emissions Characteristics of Aerospace F24 in a Constant Volume Combustion Chamber and a Common Rail Direct Injection Ci Engine

Related Industries

Related Products & Solutions

DL850/DL850V ScopeCorder

Combining the capabilities of an Oscilloscope and the characteristics of a Data Acquisition Recorder, the Yokogawa Scopecorder is a versatile tool for engineers making measurements in the industrial, transportation and energy sectors.

ScopeCorders

  • Flexible, high-performance Yokogawa Test&Measurement ScopeCorder
  • Modular platform combines mixed signal oscilloscope and portable data acquisition recorder 
  • Captures high-speed transients and low-speed trends 

Precision Making

Top