Automotive

Yokogawa understands the unique demands of automotive and transportation. As vehicle technology continues to advance in the areas of safety, environmental friendliness, and comfort, Yokogawa test & measurement instruments continue to evolve and advance to support the increasingly complex electronic vehicle components, systems, and innovations. Yokogawa diligently provides up-to-the-minute technologies in Body Control, Safety Systems (ABS, Airbags, Rollover Prevention), Drivetrain performance, development, ECU (Electronic Control Unit), In-Vehicle Entertainment and various others. With foresight, Yokogawa also offers measuring instruments that will lead you into the future in five key areas: Hybrid Electric Vehicle (HEV), Fuel Cells, In-vehicle LAN, Vehicle components and Intelligent Transport System (ITS) equipment. Yokogawa also offers compliance test solutions such as CAN, the de-facto standard, and Advanced Power Analyzers, such as the SB5000 Serial Bus Analyzer with advanced functions for Flex-Ray technology, the protocol for incoming standards. These are just a few of the ways Yokogawa diligently strives to meet your evolving needs.

Overview:

Testing actuation of a side impact airbag to measure the optimal timing.

Overview:

Battery Voltage Fluctuation During ABS Action

Overview:

Battery Voltage Fluctuation During ABS Action

Overview:

Testing actuation of a side impact airbag to measure the optimal timing.

Overview:

Measuring efficiency with high precision: simultaneous measurement of input and output

Overview:

Observation of Inverter Switching Waveforms

Overview:

Surge Waveform Recording & Power Monitoring

Overview:

Evaluation of Wireless Charging System for EV/PHV

Overview:

Construction and verification of SENT communication system

Overview:

Total efficiency measurement of EV/PHV

Overview:

Testing Engine Valve Spring Strength

Overview:

Measuring Conversion Efficiency of Power Conditioner

Overview:

Evaluating Magnetic Components

Application Note
Overview:

Harmonic measurements

Overview:

Reference equipment for power calibration

Overview:

Characteristics of Transient Response from Industrial Robots

Overview:

Evaluating and designing the Electric Power Steering (EPS)

Overview:

In this application note you will learn when and how to use different methods to connect a current transformer to a power analyzer.

Overview:

If a product uses power, then power consumption and power quality measurements must be made as part of product design and test. These measurements are essential to optimize product design, comply with standards and provide nameplate information to customers.
This article will discuss best practices for making these measurements, starting with power measurement basics and proceeding to the types of instruments and associated components typically used to make measurements. The article will conclude with real-world examples, which apply the information imparted earlier in the article to solve practical measurement problems. Although most of us have been exposed to basic power measurement equations, a primer is helpful to summarize this information and to show how it applies to product design and test.

Overview:

There are several factors for a user to consider when using an IEPE accelerometer, particularly when used with newly available integrated signal conditioner/data acquisition systems. Correctly managing these factors will help the user avoid erroneous data from their IEPE accelerometer and ensure the quality of the measurement data is at the level they expect and require.

Overview:

One of the main responsibilities of engineers and technicians is data analysis, and this article will show how multi-touch technologies can be used to improve the performance of this and other related tasks.

Overview:

How can I capture data from motion sensors synchronized with other analog data? The Yokogawa ScopeCorder series of instruments feature input modules and functions to make this possible. 

Overview:

How to use built-in calculations to analyze motor rotor position and find the relative angle between the rotor and sensors such as encoders or resolvers.

Overview:

The DL850 can take engineers to a new level of efficiency in the development of everything from green devices to complex advanced systems.

Overview:

The request for lower uncertainties in power measurements are increasing,especially in the transformer industries. Their role is to ensure that the electricity is distributed in an efficient and reliable way. 

Overview:

In recent years, energy-saving instruments including inverters have been actively developed. Researchers in R&D sections want to evaluate their prototypes in real time to enhance the development efficiency. Therefore, measuring instruments are required to have functions for not only simply recording data but also immediately calculating power values and efficiency based on the data. To meet this demand, Yokogawa has developed a unique real-time math function for the DL850 ScopeCorder, our multi-channel waveform recording instrument. This paper gives an overview of the function and its application examples.

Overview:

This white paper describes the WT1800, a precision power analyzer that has been replaced by the WT1800E, a unit with numerous improvements including better accuracy. Please visit the WT1800E product page to learn more about the WT1800E.

To keep pace with the increasing speed of switching devices in inverters, Yokogawa has developed the WT1800 precision power analyzer with 10 times faster sampling speed and 5 times wider frequency bandwidth compared with previous models. Its basic accuracy is 0.15% and the frequency bandwidth of voltage and current is 0.1 Hz to 5 MHz (-3 dB, Typical) including the DC component. With up to six inputs, a single WT1800 unit can measure the efficiency of three-phase inverters. In addition, the high-speed data capturing mode allows the WT1800 to measure transient power. This paper describes the high-speed, real-time power measurement technologies underlying these functions.

Overview:

This white paper describes the WT1600 precision power analyzer, a model that has been discontinued and replaced with the WT1800E. Please visit the WT1800E product page for more information regarding the WT1800E.

We have developed the WT1600, a high-precision, wide-bandwidth power meter. The WT1600 can measure DC and AC signals from 0.5 Hz to 1 MHz with a basic power accuracy of 0.1%. With the maximum of six input elements installed, a single WT1600 can measure the efficiency of a three-phase inverter. In addition to the functions of conventional power meters, it has wider ranges and various functions including waveform display. This paper gives an outline of the WT1600. 

Overview:

More than a test tool 

Typically, a portable scope or test tool is used by an engineer to diagnose faults on a production line in real-time, or to carry out tests in a workshop. But how can faults be detected and diagnosed when they are intermittent and the engineer needs to be somewhere else? On the other hand, a portable data logger can capture lots of data, including the faults over a period of time, but requires the data to be searched and analysed later to make sense of it.

Overview:

The WTViewerE is a powerful software that supports remote analysis and control of multichannel measurements from the WT series of Yokogawa power analyzers. In addition to real-time control of remote measurements in multiple formats and customizable layouts, the latest version of the software allows any 4 Yokogawa power analyzers regardless of configuration to be synchronized for multi-unit measurements.  This allows for sophisticated computations for larger applications that may need more than one power analyzer.

Overview:

Energy efficiency directives from bodies like International Electro technical Commission (IEC), European commission, California Energy Commission (CEC) and others govern standards across various classes of electrical, electronic and mechatronic equipment.

This infographic provides a snapshot guide for making reliable power measurements across your product development lifecycle with particular emphasis on the high accuracy needs of compliance testing. 

Overview:

The accuracy of a measurement instrument varies with the range over which a reading is measured.

But what if different manufacturers specify this range differently in their instruments?

This article explores the impact of range definitions on measurement accuracy and how one can be mindful when comparing accuracy across instruments.

Download the article now

Overview:

Are you achieving the levels of accuracy you need? 

This article outlines the top reasons for inaccuracies in power measurements and how to tackle them.

Download the article to learn about:   

  • Validity of instrument specifications
  • External sensors and temperature effects
  • Calibrating a measurement set up

Download the article now

Software

Training Videos

How-tos

    Overview:

    In this video we review the major features of the DL350 showcasing its portability, functionality, and operability. This device features battery power, 18 signal conditioning input modules, and touchscreen access to enhanced triggers, math, and analysis.

    Overview:

    In this video, Dami Ashebu, an Application Engineer with Yokogawa Test and Measurement discusses how a DL850EV data acquisition system can be used to gather various analog and serial bus data for systems validation and reverse engineering in the automotive industry.

Webinars

Looking for more information on our people, technology and solutions?


Contact Us
 
Top