A ScopeCorder is an instrument combining a mixed signal oscilloscope and portable data acquisition recorder into a modular platform designed to capture both high-speed transients and low-speed trends. Yokogawa’s ScopeCorder product family provides flexible and high-performance multi-channel test instruments by combining a variety of signal conditioning input modules, onboard calculations, and deep data acquisition storage into an off-the-shelf data acquisition solution.
An integrated measurement system for every electromechanical application
Faced with complex integrated systems, engineers need a sophisticated, flexible measurement solution for R&D, validation, and troubleshooting. ScopeCorders meet this challenge with built-in analysis and recording functions in an all-in-one data acquisition solution.
Designed for engineering insights, Yokogawa ScopeCorders are:
Request a quote for the Yokogawa DL950, Yokogawa SL1000, Yokogawa IS8000, or Yokogawa DL350 ScopeCorde price.
The Yokogawa DL950 ScopeCorder captures and analyzes a wide variety of electrical, physical sensor signals, and serial buses. It offers a unique combination of high sampling rates, for a detailed view and long recording times to monitor trends over time.
A compact, battery-powered, touch screen instrument you can take into the field featuring the deep measurement and recording capabilities you need in the lab.
A headless ScopeCorder system capable of connecting multiple chassis into one PC-based system.
Conditions
Input Channels >= Sampling Rate >= Bandwidth >= ADC Resolution >= Display Size >=
Model Code
|
DL950
|
DL350
|
720120
|
Max. Sampling Rate
|
200 MS/s (720212)
|
100 MS/s (720211)
|
100 MS/s (720211)
|
Bandwidth
|
40 MHz (720212)
|
20 MHz(720211)
|
20 MHz(720211)
|
Analog Input Channels
|
128 ch (720221)
|
32ch (720220)
|
16ch (720211) 128ch (16chx8units sync.)
|
Logic Input
|
128 bit (720230)
|
48 bit (720230)
|
-
|
Vertical Sensitivity
|
10 mV/div to 20 V/div (Direct input, 720212)
|
5 mV/div to 20 V/div (Direct input, 720250)
|
5 mV/div to 20 V/div (Direct input, 720250)
|
Input Coupling
|
AC, DC, GND (720212)
|
AC, DC, GND (720250)
|
AC, DC, GND (720250)
|
Input Impedance
|
1 MΩ±1.0% (720212)
|
1 MΩ±1.0% (720250)
|
1 MΩ±1.0% (720250)
|
Max. Input Voltage
|
1000V(DC+ACpeak) (with 700929/702902/701947)
|
1000V(DC+ACpeak) (with 700929/702902/701947)
|
1000V(DC+ACpeak) (with 700929/702902/701947)
|
Trigger Types
|
Edge,A ->B(N),A Delay B,Edge on A,OR,AND,Period,Pulse Width,Wave Window
|
Edge, OR, AND, Wave Window, Edge On A, Period, Pulse Width
|
Edge, Level, Wave Window, Line, Time
|
Trigger Types (Option)
|
-
|
-
|
-
|
Vertical Axis Resolution
|
12 bit/14 bit/16 bit (depends on input module)
|
12 bit or 16 bit (depends on input module)
|
12 bit or 16 bit (depends on input module)
|
Sweep Time
|
100 ns/div to 5day/div (Scope Mode) 10 us to 50 days (Memory Recorder Mode)
|
1 us/div to 5day/div (Scope Mode) 1 ms to 50 days (Memory Recorder Mode)
|
20 s to approx. 12 years (Freerun Mode)
|
Max. Record Length (St'd)
|
500 MPoints
|
100 MPoints/module
|
50 Mpoints/ch
|
Max. Record Length (Optional)
|
4 Gpoints
|
100 MPoints/module
|
-
|
Internal Media Drive (St'd)
|
SD memory card slot
|
SD memory card slot
|
-
|
Internal Storage
|
512 GB SSD
|
-
|
500 GB HDD (option)
|
Interface (St'd)
|
USB3.0, Ethernet
|
USB2.0, Ethernet
|
USB2.0, Ethernet (Option)
|
Interface (Optional)
|
10G Ethernet
|
-
|
-
|
Other Features
|
A variety of 20 plug-in modules, Superior noise rejection, Continuous data recording into a PC storage, CAN/CAN FD/LIN/SENT monitoring and trend waveform display
|
A4-sized compact chassis, A variety of 18 plug-in modules, Superior noise rejection, History memory, Continuous data recording into an SD card, Vibration resistant
|
A variety of 13 plug-in modules, Superior noise rejection, max. 128ch (16ch x 8 units sync.), 4 independent sampling rate, Acquisition Software
|
Other Features (Optional)
|
IEEE1588, IRIG interface, GPS interface, User-defined math function, Real-time math function, Power math function (with including Real time math function, Internal SSD, Probe power (4 or 8 outputs), Vihecle Edition
|
Operated by AC, DC(10 - 30V) or rechargeable battery, Position and global timing using GPS (accessory, sold separately)
|
Probe power (4-output), Xviewer software
|
Display
|
12.1" color TFT (XGA) (Capacitive Touch Screen)
|
8.4" color TFT LCD (SVGA) (Resistive Touch Screen)
|
FSTN monochrome LCD (128x64pixel)
|
External Dimensions (W x H x D) *excluding protrusions
|
375 x 259 x 202 mm
|
305 x 217 x 92 mm
|
319 x 154 x 350 mm
|
Weight
|
Approx. 7.5 kg (main unit)
|
Approx. 3.3 kg (main unit)
|
Approx. 6 kg (main units)
|
Input | Model No. | Sample rate | Resolution | Bandwidth | Number of channels | Max.measure- ment voltage *11(DC + ACpeak) |
DC accuracy |
Note | Photo | Compatible products |
Voltage | 720212 | 200 MS/s | 14 bit | 40 MHz | 2 | 1000 V*2 200 V*5 |
±0.5% | High speed, high voltage, isolated *9 |
![]() |
DL950 |
Voltage | 720211 | 100 MS/s | 12 bit | 20 MHz | 2 | 1000 V*2 200 V*5 |
±0.5% | High speed, high voltage, isolated *9 |
![]() |
DL950 DL350 DL850E DL850EV DL850 DL850V SL1000 |
Voltage | 720250 | 10 MS/s | 12 bit | 3 MHz | 2 | 800 V*2 200 V*5 |
±0.5% | High noise immunity, isolated | ![]() |
DL950 DL350 DL850E DL850EV DL850 DL850V SL1000 |
Voltage | 701251 | 1 MS/s | 16 bit | 300 kHz | 2 | 600 V*2 140 V*5 |
±0.25% | High sensitivity range (1 mV/div), low noise (±100 μVtyp.), and high noise immunity, isolated | ![]() |
DL950 DL850E DL850EV DL850 DL850V SL1000 |
Voltage | 720256 | 10 MS/s | 16 bit | 3 MHz | 4 | 600 V*2 200 V*5 |
±0.25% | 4 CH BNC input low noise, high noise immunity, isolated | ![]() |
DL950 |
Voltage | 720254 | 1 MS/s | 16 bit | 300 kHz | 4 | 600 V*2 200 V*5 |
±0.25% | 4 CH BNC input low noise, high noise immunity, isolated | ![]() |
DL950 DL350 DL850E DL850EV DL850 DL850V |
Voltage | 701255 | 10 MS/s | 12 bit | 3 MHz | 2 | 600 V*4 200 V*3 |
±0.5% | High speed, non-isolated | ![]() |
DL950 DL850E DL850EV DL850 DL850V SL1000 |
Voltage | 720268 | 1 MS/s | 16 bit | 300 kHz | 2 | 1000 V*10 | ±0.25% | With AAF, RMS, and high noise immunity, isolated | ![]() |
DL950 DL350 DL850E DL850EV DL850 DL850V SL1000 |
Voltage | 720220 | 200 kS/s | 16 bit | 5 kHz | 16 | 20 V*3 | ±0.3% | 16 CH voltage measurement (Scan-type) Isolated(GND-terminal) non-isolated (CH-CH) |
![]() |
DL350 DL850E DL850EV DL850 DL850V |
Voltage & Temperature | 701261 | 100 kS/s (Voltage) 500 S/s (Temperature) |
16 bit (Voltage) 0.1 ℃ (Temperature) |
40 kHz (Voltage) 100 Hz (Temperature) |
2 | 42 V | ±0.25% (Voltage) |
Thermocouple (K, E, J, T, L, U, N, R, S, B, W, KP/AuFe), isolated | ![]() |
DL950 DL350 DL850E DL850EV DL850 DL850V SL1000 |
Voltage & Temperature | 701262 | 100 kS/s (Voltage) 500 S/s (Temperature) |
16 bit (Voltage) 0.1 ℃ (Temperature) |
40 kHz (Voltage) 100 Hz (Temperature) |
2 | 42 V | ±0.25% (Voltage) |
Thermocouple (K, E, J, T, L, U, N, R, S, B, W, KP/AuFe), with AAF, isolated | ![]() |
DL950 DL350 DL850E DL850EV DL850 DL850V SL1000 |
Voltage & Temperature | 701265 | 500 S/s | 16 bit (Voltage) 0.1 ℃ (Temperature) |
100 Hz | 2 | 42 V | ±0.08% (Voltage) |
Thermocouple (K, E, J, T, L, U, N, R, S, B, W, KP/AuFe), high sensitivity range (0.1 mV/div), isolated | ![]() |
DL950 DL350 DL850E DL850EV DL850 DL850V SL1000 |
Voltage & Temperature | 720266 | 125 S/s | 16 bit (Voltage) 0.1 ℃ (Temperature) |
15 Hz | 2 | 42 V | ±0.08% (Voltage) |
Thermocouple (K, E, J, T, L, U, N, R, S, B, W, KP/AuFe), high sensitivity range (0.1 mV/div), Low noise, isolated | ![]() |
DL950 DL350 DL850E DL850EV DL850 DL850V SL1000 |
Voltage & Temperature | 720221 | 10 S/s | 16 bit | 600 Hz | 16 | 20 V | ±0.15% (Voltage) |
16 CH voltage or temperature measurement (scan method) Thermocouple (K, E, J, T, L, U, N, R, S, B, W, KP/AuFe), isolated *8 |
![]() |
DL950 DL350 DL850E DL850EV DL850 DL850V |
Strain | 701270 | 100 kS/s | 16 bit | 20 kHz | 2 | 10 V | ±0.5% (Strain) |
Supports strain NDIS, 2, 5, 10 V built-in bridge power supply, isolated | ![]() |
DL950 DL350 DL850E DL850EV DL850 DL850V SL1000 |
Strain | 701271 | 100 kS/s | 16 bit | 20 kHz | 2 | 10 V | ±0.5% (Strain) |
Supports strain DSUB, 2, 5, 10 V built-in bridge power supply, and shunt CAL, isolated | ![]() |
DL950 DL350 DL850E DL850EV DL850 DL850V SL1000 |
Voltage & Acceleration | 701275 | 100 kS/s | 16 bit | 40 kHz | 2 | 42 V | ±0.25% (Voltage) ±0.5% (Acceleration) |
Built-in anti-aliasing filter, Supports built-in amp type acceleration sensors (4 mA/22 V), isolated | ![]() |
DL950 DL350 DL850E DL850EV DL850 DL850V SL1000 |
Frequency | 720281 | 1 MS/s | 16 bit | - | 2 | 420 V*2 42 V*3 |
±0.1% (Frequency) |
Measurement frequency of 0.01 Hz to 500 kHz, Measured parameters (frequency, RPMs, RPSs, period, duty cycle, power supply frequency, pulse width, pulse integration, and velocity), isolated, resolution 625 ps | ![]() |
DL950 DL350 DL850E DL850EV DL850 DL850V SL1000 |
Logic | 720230 | 10 MS/s | - | - | 8 bit x 2 Ports |
(depend on logic prove used.) | - | (8 bit/port) × 2, compatible with four types of logic probe (sold separately), non-isolated | ![]() |
DL950 DL350 DL850E DL850EV DL850 DL850V |
CAN/ CAN FD | 720242 | 100 kS/s | - | - | 60 Signals x 2 Ports |
10 V | - | CAN/CAN FD port × 2, extraction of up to 32-bit data *6 *7, isolated | ![]() |
DL950 DL350 DL850EV DL850V |
CAN, LIN | 720241 | 100 kS/s | - | - | 60 Signals x 2 Ports |
10 V (CAN) 18 V (LIN) |
- | CAN port × 1 (CAN FD is not supported), LIN port × 1 *6 *7, isolated | ![]() |
DL950 DL350 DL850EV DL850V |
SENT | 720243 | 100 kS/s | - | - | 11 Data x 2 Ports |
42 V | - | Supported protocol: SAE J2716. *6 *7, isolated | ![]() |
DL950 DL350 DL850EV DL850V |
Scanner box | 701953 -L1 | - | - | - | - | - | - | 16-CH scanner box with 1 m cable | ![]() |
DL950 DL350 DL850E DL850EV DL850 DL850V |
Scanner box | 701953 -L3 | - | - | - | - | - | - | 16-CH scanner box with 3 m cable | ![]() |
DL950 DL350 DL850E DL850EV DL850 DL850V |
*1:Probes are not included with any modules.
*2:In combination with 700929, 702902, or 701947 probe.
*3:Direct input
*4:In combination with 10:1 probe model 701940
*5:In combination with 701901 + 701954.
*6:Any other modules can be installed in the remaining slots.
*7:When using these modules with DL950/VCE or DL850EV, up to four, CAN & LIN Bus Monitor Modules (720241), CAN/CAN FD Monitor Modules (720242) or SENT Monitor Modules (720243) total can be used on a single main unit. For the CAN & LIN Bus Monitor Modules (720241), CAN/CAN FD monitor modules (720242), up to two in total can be used on a single main unit.
*8:The 16 CH Scanner Box (701953) is required for measurement.
*9:Class 1 Laser Product、 IEC/EN60825-1、GB7247.1-2012
*10:: In combination with 758933 and 701954. 1000 Vrms (1000 VDC or 1414 Vpeak maximum) when using with DL950 or DL350. 850V (DC + ACpeak) when using with DL850/DL850V/DL850E/DL850EV or SL1000
*11:See the main specifications for voltage-axis sensitivity setting and measurement range.
DL950_Comprehensive_evaluation_of_vehicle_systems_using_real_signal
Testing actuation of a side impact airbag to measure the optimal timing.
DL950_Switched_Mode_Power_Supply_Output_Monitoring
DL950_Evaluation_of_ECU_and_InverterMotor
Using the OR trigger and Dual Capture, it is easy to trap and record failure conditions on electrical harnessses (wiring interconnects) over a long duration test.
How to use built-in calculations to analyze motor rotor position of Brushless DC motors (BLDC) and Permanent Magnet Synchronous Machines (PMSM) and find the relative angle between the rotor and position sensors such as encoders or resolvers
Construction and verification of SENT communication system
How can I capture data from motion sensors synchronized with other analog data? The Yokogawa ScopeCorder series of instruments feature input modules and functions to make this possible.
Battery Voltage Fluctuation During ABS Action
Government agencies that define the standardization of energy efficiency metrics continue to be a driving force behind the development of the next generation electric vehicle powertrains. These metrics require manufacturers to have high confidence in their measurements and motivate the optimization of efficiency.
The Yokogawa DL850E is a waveform measuring and recording instrument with eight slots for signal conditioning and data acquisition modules. In addition to high-speed signal inputs up to 100 MHz sampling rate, the DL850E has features for real-time signal processing that provide advantages to scientists and engineers trying to observe complex systems.
The 702911 and 702912 Logic Probes cannot be used with the DL750/DL750P. The logic probes were orginally designed to be used with the OR Series. The SL1400 can use the 700986, 700987, 702911, 702912. The DL750 can ...
Please use the attached "Sampling Rate Table.xls" to help you determine the appropriate Record Length and Time/Div setting to achieve XYZ Sample/Sec Sample Rate. Keep in mind that there are limitations to the amount of ...
We have tested the following IRIG generator for compatibility with the DL850. GPS200 (Masterclock)http://www.masterclock.com/products/gps200.phphttp://www.masterclock.com/popup/standard_antenna.htm ES101 ...
In most cases, all the DL750 modules will be compatible with the DL850 and SL1000. However, there are some module which can be used with DL750 but cannot be used with DL850. These are typically the early DL750 modules ...
No, it is not possible to use the WDF File Access API in LabView to read *.WDF files. Although LabVIEW can use and access DLLs, there is a special function in the WDF File Access API called WdfGetSacleWave64, which ...
No, MATLAB cannot use the WDF File Access API to read *.WDF files.There is a special function in the WDF File Access API called WdfGetSacleWave64, which is used to read the data from the *.WDF file. This command uses ...
Unfortunately it is not possible to convert a .WVF file to a .WDF file. A .WVF file saved by a DL750 can only be loaded in Xviewer or a DL750. Xviewer is capable of loading both .WVF and .WDF file formats.
No, if you send commands simultaneously from another communications interface, that has not been selected on the DL850/DL850V, the instrument will not execute the commands properly.
When making a WT230 RS232C connection using GateWT, please verify the following RS232C communication settings on the instrument: Mode = 488.2 Hand = 0 For = 0 Baud Rate = 9600 Terminator Cr+Lf Even though you can run ...
The lowest possible device setting for sample rate on the DL850 is 5 Sa/sec. There are however, different methods that will allow you to achieve much lower sample rates which includes the use of an external clock, ...
Decimation is a technique used to reduce the total number of samples. You can use Xviewer to perform decimation on your waveform data files that have the WDF/WVF/ASCII CSV extension format. Decimation reduces the ...
We do not have an instruction manual describing the *.WDF file format structure like we did for the *.WVF files.
We provide a list of support options with more details.
If your DL series oscilloscope is not measuring rise or fall time, it may be because you are attempting to measure asymmetric waveforms. It is not possible to perform automatic rise or fall time measurements on DL ...
The SL1000 is capable of transferring previous data sets/files while streaming is still in progress through the File Divide feature. When the SL1000 starts recording, it opens a new file and starts logging data. If the ...
Xviewer may only be used to view and analyze data saved by the SL1000, it cannot be used to remotely control the SL1000. You can also transfer files between the SL1000 and a PC. For the SL1000, Xviewer can support ...
Yes you can load the setup files *.WES that was saved using the older version of the WE Control Software onto the newer version of the WE Control Software. Please follow the procedures listed in the attached PDF file.
Please follow the procedures listed in the attached document for instructions on how to update the firmware on the SL1000.
Yes, Xviewer has the capability of opening multiple files from different DL, SL, and WE series instruments into a single window display. The only requirement for viewing files from different products is that the sample ...
Yes, you can use the 700929 isolated probe with non-isolated input modules.
It is not necessary to perform deskew on a DL850 when using a current probe. The DL850 does have enough resolution to perform deskew and will not be able to find the time offset. Typically the deskew value ranges from ...
Unfortunately Xviewer is not a client-server type software and it is not recommended to run Xviewer on a Windows Server based OS. Xviewer needs to be installed on a client PC to operate without issue. We cannot ...
Unfortunately there is no way to read these warning messages on the DL750. In addition, there is no other command available to determine if there was "No Matching Record" found in History for a particular ZONE ...
Please download and view the attached PowerPoint presentation for a comprehensive guide on how to operate the DL850 Dual Capture mode.
Error(Code:539)Press ESC Key to Close.Module configuration is not matched, so it couldn’t loaded.Configuration of saved data can see by File property.The following error is ...
The correct syntax for implementing the Atan function on the DL850 is ATAN(C1).There is a typo in the DL850 IMDL85001EN 4thEd Features Guide, ATAN(C1,C2) is in-correct. However, the syntax for the DL750 IS ...
The DL850 FLD file extension contains the acquired waveform data in IEEE 32-bit floating point format. You can analyze the floating point format using the low-level file I/O commands in MATLAB. FLD file format contains ...
Please see the attached "DL850 Wave Window FAQ.zip" for detailed instructions and setup feature explanations. There is also a wave window FAQ discussion included in the zip file.
No, this "calibration" does not refer to the ScopeCorders Auto-Cal feature. When the Auto-Cal function is set to OFF, the ScopeCorder will not automatically calibrate after a 30 minute warm-up period. You must do a ...
No, the Standard Operating Conditions are not equivalent to the compensated temperature range. The unit's accuracy specifications are valid when operated within the Standard Operating Conditions and when the temperature ...
Yes, you can use GPIB to remotely control the DL850/DL850 using Xviewer or LabVIEW and have the scope save data onto a shared network drive using the Ethernet interface.
Can Xviewer.exe be run as multiple instance? No - not at this time. Xviewer can not control two or more DL850 chassis. Xviewer can not connect to two or more instruments at the same time. Two or more Xviewer ...
DL850 .WDF File will not open with Xviewer 1.64 Solution: Please update to latest version (now at version 1.72).
What is Algorithim for Xviewer's PP Compression? PP Compression is peak-peak compression ... and it is an option when you save a waveform data file (WVF or WDF). When you select the PP Comp option, Xviewer saves ...
Can I buy a ground clip for my new-style 700929? Two part numbers required for new-style probe: NEW STYLE features/requires two pieces: ground ref clip and safety plug-on clip. B9940WX Clip, plug-on, ...
701260 Calibration Procedure Typo This should be "+1V +/- 2.5mV" and "0V +/-2.5mV". The service manuals for DL750 and for SL1400 have same mistakes in writing. one attachment
My DL750 HDD RECORDING "REALTIME" Files are missing. Please help. (Or: You need to locate them and move them to my PC via USB THUMB DRIVE.) DL750 REALTIME FILES ".WDF Files" are not visible on the DL750 HDD ...
Unfortunately, waveform data saved by Xviewer in the *.WVF, *.CSV, or *.FLD format cannot be loaded onto DL series instruments.
Unfortunately, the header file .HDR saved by the ScopeCorder does not contain the instrument settings. If the .WVF and .HDR file pair was saved by the DL750/DL750P/SL1400, you may reload the WVF file back into the ...
The following softwares have been tested for Windows 7 compatibility. WTViewer Xviewer SL1000 Acquisition Software USB Instrument Drivers for all USB supported instruments TMCTL Library Files for programming with VB, ...
The bandwidth for the 720210 100 MS/s is 20Mhz.
No, the 16 Channel Voltage Input Module cannot be used to measure temperature.
The number of each module that can be placed in a DL850 is limited to a maximum of: Voltage Scanner Module: 8 CAN Bus Monitoring Module: 2 (must be installed in slot 7 & 8) Logic Input Module: 8 100 MS/sec Module: 4 ...
Yes, please use the trigger in/out function or the time trigger to synchronize the trigger input to each DL850.
This comprehensive training module covers the following topics:
This comprehensive training module covers the following topics:
This training module covers the following topics:
Watch a step-by-step walkthrough of recording GPS position and motion data on the DL350.
In this video we review the major features of the DL350 showcasing its portability, functionality, and operability. This device features battery power, 18 signal conditioning input modules, and touchscreen access to enhanced triggers, math, and analysis.
Test and measurement engineering work groups can have differing priorities and requirements, which often results in multiple instrumentation systems and data file formats, as well as incompatible reporting. This lack of effective communication between groups and instruments causes decreased efficiency and quality and increased spending and time to market. Unify test and measurement instrumentation, software, and data across engineering teams with a suite of solutions that caters to the different needs of engineering work groups, including accurate power data, fast sampling rates, long recordings of multiple different input types, and insights into waveform data.
This video demonstrates how to measure transient phenomena on power signals using the Yokogawa Test&Measurement PX8000 Precision Power Scope.
In several applications, especially those testing AC power to a standard such as IEC61000-3-11, the voltage and current signals must be monitored to confirm there are no major dips and/or swells in the signal. This can be done with instruments capable of reporting rms values, including power analyzers, traditional oscilloscopes, and some data acquisition systems.
To test to a standard, however, the instrument must have an accuracy spec that is traceable back to a national standard of calibration such as ISO17025 or NIST.
CAN Bus communication is widely used in the transportation industry where reliable transmission of data is paramount. Monitoring and recording these communications can be easier when using the proper instruments. In this video, a Yokogawa Test&Measurement Applications Engineer demonstrates how to setup the DL950 ScopeCorder to read the temperature of a motor drive alongside its voltage and current output.
The multi-unit synchronization option for the Yokogawa Test&Measurement DL950 ScopeCorder lets you time synchronize up to five DL950 ScopeCorders, for up to 160 channels of voltage, current, temperature, strain measurements, and more. This video walks you through how to set up and connect the multiple DL950 ScopeCorders, take measurements, and pull the data from all of the instruments for analysis with the IS8000 Integrated Test and Measurement Software Platform.
Looking for a turnkey high-speed data transfer solution with better bandwidth and minimal manual overhead?
The 10Gb Ethernet option on the Yokogawa Test&Measurement DL950 ScopeCorder fits that very role and makes capturing and recording high-speed data seamless and convenient.
Record data at 50 times the speeds of traditional Ethernet and USB connections and automatically transfer data to your PC in a single step using the IS8000 Integrated Software Platform.
Using the DL350 Memory Recorder Mode Easy Setup, combined with a 16-channel thermocouple input, it's easy to record hours, days, or weeks of data with a few simple settings.
In this video we demonstrate the GPS data logging capability of the DL350 Portable ScopeCorder. Recording Position, Velocity, and Altitude simultaneously with accelerometers or other analog inputs is simple with the DL350's built-in features.
A demonstration reading a 4 - 20 mA transducer into an analog channel on the DL350 Portable ScopeCorder.
In this video we demonstrate the automotive bus decoding features of the DL850EV ScopeCorder.
In this video, Dami Ashebu, an Application Engineer with Yokogawa Test and Measurement discusses how a DL850EV data acquisition system can be used to gather various analog and serial bus data for systems validation and reverse engineering in the automotive industry.