IEC62301 Standards Testing for Standby Power Measurement

Introduction

Energy consumption in low-power and standby modes is now recognized as an important issue due to the increased awareness that energy resources are becoming more limited and because the demand for energy-saving household electrical appliances continues to grow.

Standby power consumption is defined as the minimum power draw when a device is plugged in to utility grid power.

What is the IEC62301 standard?

Internationally recognized standards IEC62301 Ed2.0 (2011) and EN 50564:2011 define standby mode as the lowest energy consumption of an appliance not performing its main function, when connected to the mains. Additionally, IEC62301 Ed2.0 (2011) defines the test methods and requirements for both the mains supply and the test equipment. Appliances that typically fall under the umbrella of these standards include those that turn on almost instantly without a delay for warm-up, such as smart home devices, TVs, anything that get switched on with a remote, and even some plug-in chargers for cell phones and laptops.

Figure 1 Examples of devices that use standby power | Yokogawa Test&Measurement

Figure 1. Examples of devices that use standby power.

 

Manufacturers of domestic electrical appliances and related equipment that seek to develop and market products that are certified as operating with high efficiency and minimum standby power consumption must perform strict standby power testing as determined by government-backed programs such as ENERGY STAR and the EU Eco Directive.

As these energy efficiency and environmental protection programs continue to expand, their requirements become more stringent, resulting in a drop in the standby power level necessary to confirm compliance. It is crucial that design and test engineers choose highly accurate power measurement tools to confirm that their devices meet these requirements.

 

The Challenge: Measuring Standby Power With Precision

The IEC62301 Ed2.0 (2011) standard defines the relevant test conditions for accurate measurement of standby power. Requirements for the measuring device include the ability to measure low current and power factor, crest factor, harmonic content, and energy consumption over time if the power consumption fluctuates. For this reason, a power analyzer is typically used to measure standby power.

IEC 62301 defines testing conditions as follows:

  • Ambient temperature: 23°C (+/- 5) with still air.
  • Power supply harmonic content: Should not exceed 2% up to the 13th harmonic.
  • Crest factor: The ratio of peak value to RMS value of the test voltage should be between 1.34 and 1.49.

Accuracy requirements for measuring equipment:

  • For measurements higher than 0.5 Watts, the uncertainty must be less than 2% at a 95% confidence level.
  • The power measurement instrument must resolve:
    • 0.01 Watts or less for measurements below 10 Watts.
    • 0.1 Watts or less for measurements above 10 Watts (up to 100 Watts).

The Solution: Power Analyzers and Software for IEC62301 Compliance

For easy and accurate measurements, Yokogawa Test&Measurement’s Power Consumption Measuring Software connects with WT series power analyzers and satisfies the requirements of IEC62301 Ed2.0 (2011), for household electrical appliance standby power measurement, and EN 50564:2011, for electrical and electronic household and office equipment low power consumption measurement.

Connection method

A power analyzer can be connected to the software using GPIB, Ethernet, USB, or RS-232 by selecting the appropriate power analyzer and connection method shown on the Connection screen. Click Device Search, select the proper instrument, and then click Connect to establish the connection.

Figure 2 Connection screen showing a successfully connected power analyzer | Yokogawa Test&Measurement

Figure 2. Connection screen showing a successfully connected power analyzer.

 

Preparing for measurement

The Settings screen allows users to make selections based on their specific testing requirements including the region, standard, measurement period, and more. The region selected determines the rated voltage and frequency. Users can also specify stability judgment algorithms to include linear regression, cumulative average, and three-section compare algorithms.

Figure 3 The Settings screen allows for test configuration based on user specific requirements | Yokogawa Test&Measurement

Figure 3. The Settings screen allows for test configuration based on user-specific requirements.

 

Test report editing

A customizable test report is generated that includes information such as test and lab details, appliance details, and test parameters. Manually-input comments are also visible on the report.

Figure 4 The Report Edit function allows for customizable test report details | Yokogawa Test&Measurement

Figure 4. The Report Edit function allows for customizable test report details.

 

Making a compliant standby power measurement

On the Condition and Measurement screen, users can start measurements, view trends, and review measurement data. Trend settings are configurable and allow users to select the trends they want to view, change colors, turn graticule and scale values off or on, and adjust the time per division.

Figure 5 Condition and Measurement screen | Yokogawa Test&Measurement

Figure 5. The Condition and Measurement screen initiates the test and updates as the test is run.

 

Reporting

Once testing is complete, a report is generated and ready to save on the output screen as a PDF, CSV, or both. For quicker and easier testing, the connection method and measurement settings can be saved and set to automatically load the next time the software is in use.

IEC62301 Test Report

Figure 6 IEC62301 Standards Example Test Report for Standby Power Measurement | Yokogawa Test&Measurement

Figure 6. Example test report.

 

Learn More About Yokogawa WT Series Precision Power Analyzers

Many devices that use standby power remain plugged in even when not in active use. Though these typically have a low power draw, with multiple devices plugged in year-round, a household or business is often consuming (and paying for) considerably more power than what they expect. To save both energy and money, standby power efficient devices, as defined by IEC62301 Ed2.0 (2011) and EN 50564:2011, must be used.

For design and test engineers to make accurate measurements that meet ENERGY STAR and EU Eco Directive mandates, Yokogawa Test&Measurement Power Consumption Measuring Software, combined with a WT series power analyzer (such as a WT300E), allows for easy setup, testing, and measurement of standby, test, and measure standby power in a variety of appliances. The ability to view trend data via custom-generated reporting means that verifying a device meets requirements is easier than ever.

Learn more about the Yokogawa Test&Measurement solutions and products mentioned in this app note:

Related Industries

Related Products & Solutions

WT1800 High Performance Leistungsanalysator

Das Highend-Gerät WT1800 ist der Nachfolger des WT1600 und eignet sich für unterschiedlichste Anwendungen, von der Energieeinsparung bis hin zu Anwendungen mit sehr großen Lasten. Der WT1800 kann mit bis zu sechs Eingängen ausgestattet werden und bietet dadurch eine maximale Flexibilität, sowie eine Grundgenauigkeit von 0,1% bei einer Bandbreite von 5 MHz.

WT1800E Präzisions-Leistungsanalysator

Der WT1800E ist ein flexibler und zuverlässiger Leistungsanalysator, der eine Leistungsmessgenauigkeit von ±(0,05 % des Messwerts + 0,05 % des Effektivwert-Messbereichs) gewährleistet. Er kann Oberschwingungen bis zur 500. Ordnung der 50/60-Hz-Grundfrequenz analysieren. Mit bis zu 6 Eingangskanälen, vielfältigen Anzeige- und Analyse-Funktionen sowie PC-Schnittstellen ist der WT1800E ideal für unterschiedlichste Anforderungen aus den Bereichen Energieeffizienz und Analyse von Oberschwingungen geeignet.

WT1800R High-Performance Power Analyzer

  • Power, harmonics (THD) measurements (up to 500th order)
  • Electrical and mechanical efficiency of inverters and motors in EV and HEV

WT3000 Präzisions-Leistungsanalysator

Das Flaggschiff unter den Leistungsmessinstrumenten und Referenzgerät bei anspruchsvollen Wirkungsgradmessungen. Exzellente Linearität und Langzeitstabilität zeichnen das WT3000 aus. Ideal auch für Trafo-Verlustmessungen bei extrem kleinen Leistungsfaktoren. Besonderheiten sind weiterhin Transienten-Aufzeichnung und FFT Analyse. 

 

WT300E Digitale Leistungsmessgeräte

Die kompakten Leistungsmessgeräte der Serie WT300E zeichnen sich durch eine Grundgenauigkeit von ±(0,1 % des Messwerts + 0,05 % des Effektivwert-Messbereichs) aus und sind ideal für die Messung des Stromverbrauchs von elektrischen Geräten sowie für Untersuchungen in den Bereichen Energieeffizienz und Energieeinsparung geeignet.

WT500 Leistungsanalysator

Kompakt und einfach einzusetzen. Der Leistungsanalysator für Anwendungen rund um die Erzeugung erneuerbarer Energien. Strombereich: 0,5 bis 40 A, Spannungsbereich: 15 bis 1000 V, Grundgenauigkeit: 0,2 %, Frequenzbereich: DC bis 100 kHz. Standardmäßig mit Stern/Dreieck Umrechnung und simultaner Oberschwingungsanalyse.
 

WT5000 - Präzisions-Leistungsanalysator

Der Präzisions-Leistungsanalysator WT5000 definiert die neue Referenz in der Leistungsmesstechnik mit einer aktuell weltweit höchsten Grundgenauigkeit von ± (0,01 % des Messwerts + 0,02 % des Effektivwert-Messbereichs). Jedes erdenkliche Anwenderszenario wird durch die modulare Bauweise (Self-Service) sowie durch die mögliche Kaskadierung realisiert: bis zu 28 Leistungsmesskanäle plus 16 Motoreingänge gewährleisten vollumfängliche Messungen. Die neue „Digital Parallelpfad-Technologie“, wie auch die Harmonischen-Analyse (bis zur 500. Ordnung) runden den Leistungsumfang ab.

Digitale Leistungsanalysatoren

Für einen effizienten Energie-Einsatz wird eine genauere und zuverlässigere Leistungsmessung immer wichtiger. Einschwingvorgänge, STANDBY-Modus, Transformatoren, Tests und verzerrte Signale durch Inverter, Motoren, Beleuchtungsschaltungen, Stromversorgungen etc., erfordern stabile, vertrauenswürdige und normgerechte Messungen.

Precision Making

Oben